Your browser doesn't support javascript.
loading
Optically Active Spin Defects in Few-Layer Thick Hexagonal Boron Nitride.
Durand, A; Clua-Provost, T; Fabre, F; Kumar, P; Li, J; Edgar, J H; Udvarhelyi, P; Gali, A; Marie, X; Robert, C; Gérard, J M; Gil, B; Cassabois, G; Jacques, V.
Affiliation
  • Durand A; Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France.
  • Clua-Provost T; Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France.
  • Fabre F; Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France.
  • Kumar P; Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France.
  • Li J; Tim Taylor Department of Chemical Engineering, Kansas State University, Kansas 66506, USA.
  • Edgar JH; Tim Taylor Department of Chemical Engineering, Kansas State University, Kansas 66506, USA.
  • Udvarhelyi P; Department of Atomic Physics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary.
  • Gali A; Department of Atomic Physics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary.
  • Marie X; Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary.
  • Robert C; Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Avenue Rangueil, 31077 Toulouse, France.
  • Gérard JM; Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Avenue Rangueil, 31077 Toulouse, France.
  • Gil B; Univ. Grenoble Alpes, CEA, Grenoble INP, IRIG, PHELIQS, "Nanophysique et Semiconducteurs" Group, F-38000 Grenoble, France.
  • Cassabois G; Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France.
  • Jacques V; Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France.
Phys Rev Lett ; 131(11): 116902, 2023 Sep 15.
Article in En | MEDLINE | ID: mdl-37774304
ABSTRACT
Optically active spin defects in hexagonal boron nitride (hBN) are promising quantum systems for the design of two-dimensional quantum sensing units offering optimal proximity to the sample being probed. In this Letter, we first demonstrate that the electron spin resonance frequencies of boron vacancy centers (V_{B}^{-}) can be detected optically in the limit of few-atomic-layer thick hBN flakes despite the nanoscale proximity of the crystal surface that often leads to a degradation of the stability of solid-state spin defects. We then analyze the variations of the electronic spin properties of V_{B}^{-} centers with the hBN thickness with a focus on (i) the zero-field splitting parameters, (ii) the optically induced spin polarization rate and (iii) the longitudinal spin relaxation time. This Letter provides important insights into the properties of V_{B}^{-} centers embedded in ultrathin hBN flakes, which are valuable for future developments of foil-based quantum sensing technologies.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Phys Rev Lett Year: 2023 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Phys Rev Lett Year: 2023 Document type: Article Affiliation country:
...