Your browser doesn't support javascript.
loading
Temporal Dynamics and Dispersal Patterns of the Primary Inoculum of Coniella diplodiella, the Causal Agent of Grape White Rot.
Ji, Tao; Languasco, Luca; Salotti, Irene; Li, Ming; Rossi, Vittorio.
Affiliation
  • Ji T; Department of Horticulture, Agricultural College of Shihezi University/Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Shihezi 832003, China.
  • Languasco L; Department of Sustainable Crop Production (DI.PRO.VES.), Università Cattolica del Sacro Cuore, Via E. Parmense 84, Piacenza 29122, Italy.
  • Salotti I; Department of Sustainable Crop Production (DI.PRO.VES.), Università Cattolica del Sacro Cuore, Via E. Parmense 84, Piacenza 29122, Italy.
  • Li M; Department of Sustainable Crop Production (DI.PRO.VES.), Università Cattolica del Sacro Cuore, Via E. Parmense 84, Piacenza 29122, Italy.
  • Rossi V; National Engineering Research Center for Information Technology in Agriculture (NERCITA)/Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
Plant Dis ; 108(3): 757-768, 2024 Mar.
Article in En | MEDLINE | ID: mdl-37787686
ABSTRACT
Grape white rot can cause considerable yield losses in viticulture areas worldwide and is principally caused by Coniella diplodiella. The fungus overwinters in berry mummies on the soil surface or on the trellis and produces pycnidia and conidia that serve as primary inoculum. However, little is known about the temporal dynamics and dispersal pattern of C. diplodiella conidia. In this study, we investigated the production and dispersal of C. diplodiella conidia from a primary inoculum source, namely, affected mummified berries that overwintered in two vineyards in northern Italy in 2021 and 2022. Conidia of C. diplodiella were repeatedly produced in berry mummies from the budburst of vines to harvesting, with approximately 50 and 75% of the total conidia in a season being produced before fruit set and véraison, respectively. The production dynamics of C. diplodiella conidia over time were described by a Weibull equation in which the thermal time is the independent variable, with a concordance correlation coefficient of ≥0.964. A rainfall cutoff of ≥0.2 mm provided an overall accuracy of ≥0.86 in predicting conidial dispersal through rain splashes from berry mummies on the soil surface, with the number of dispersed conidia increasing with the amount of rainfall. The dispersal of conidia from mummies on the trellis by washing with rain required at least 6.1 mm of rain. The proposed mathematical equations and rain cutoffs can be used to predict periods with a high dispersal risk of C. diplodiella.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Ascomycota / Vitis Type of study: Prognostic_studies Language: En Journal: Plant Dis Year: 2024 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Ascomycota / Vitis Type of study: Prognostic_studies Language: En Journal: Plant Dis Year: 2024 Document type: Article Affiliation country:
...