Your browser doesn't support javascript.
loading
SO2, silicate clouds, but no CH4 detected in a warm Neptune.
Dyrek, Achrène; Min, Michiel; Decin, Leen; Bouwman, Jeroen; Crouzet, Nicolas; Mollière, Paul; Lagage, Pierre-Olivier; Konings, Thomas; Tremblin, Pascal; Güdel, Manuel; Pye, John; Waters, Rens; Henning, Thomas; Vandenbussche, Bart; Ardevol Martinez, Francisco; Argyriou, Ioannis; Ducrot, Elsa; Heinke, Linus; van Looveren, Gwenael; Absil, Olivier; Barrado, David; Baudoz, Pierre; Boccaletti, Anthony; Cossou, Christophe; Coulais, Alain; Edwards, Billy; Gastaud, René; Glasse, Alistair; Glauser, Adrian; Greene, Thomas P; Kendrew, Sarah; Krause, Oliver; Lahuis, Fred; Mueller, Michael; Olofsson, Goran; Patapis, Polychronis; Rouan, Daniel; Royer, Pierre; Scheithauer, Silvia; Waldmann, Ingo; Whiteford, Niall; Colina, Luis; van Dishoeck, Ewine F; Östlin, Göran; Ray, Tom P; Wright, Gillian.
Affiliation
  • Dyrek A; Université Paris Cité, Université Paris-Saclay, CEA, CNRS, AIM, Gif-sur-Yvette, France. achrene.dyrek@cea.fr.
  • Min M; SRON Netherlands Institute for Space Research, Leiden, The Netherlands.
  • Decin L; Institute of Astronomy, KU Leuven, Leuven, Belgium.
  • Bouwman J; Max-Planck-Institut für Astronomie (MPIA), Heidelberg, Germany.
  • Crouzet N; Leiden Observatory, Leiden University, Leiden, The Netherlands.
  • Mollière P; Max-Planck-Institut für Astronomie (MPIA), Heidelberg, Germany.
  • Lagage PO; Université Paris-Saclay, Université Paris Cité, CEA, CNRS, AIM, Gif-sur-Yvette, France.
  • Konings T; Institute of Astronomy, KU Leuven, Leuven, Belgium.
  • Tremblin P; Université Paris-Saclay, UVSQ, CNRS, CEA, Maison de la Simulation, Gif-sur-Yvette, France.
  • Güdel M; Max-Planck-Institut für Astronomie (MPIA), Heidelberg, Germany.
  • Pye J; Department of Astrophysics, University of Vienna, Vienna, Austria.
  • Waters R; Institute for Particle Physics and Astrophysics, ETH Zürich, Zürich, Switzerland.
  • Henning T; Space Research Centre, School of Physics & Astronomy, University of Leicester, Leicester, UK.
  • Vandenbussche B; SRON Netherlands Institute for Space Research, Leiden, The Netherlands.
  • Ardevol Martinez F; Department of Astrophysics/IMAPP, Radboud University, Nijmegen, The Netherlands.
  • Argyriou I; HFML-FELIX, Radboud University, Nijmegen, The Netherlands.
  • Ducrot E; Max-Planck-Institut für Astronomie (MPIA), Heidelberg, Germany.
  • Heinke L; Institute of Astronomy, KU Leuven, Leuven, Belgium.
  • van Looveren G; SRON Netherlands Institute for Space Research, Leiden, The Netherlands.
  • Absil O; Kapteyn Astronomical Institute, University of Groningen, Groningen, The Netherlands.
  • Barrado D; Centre for Exoplanet Science, University of Edinburgh, Edinburgh, UK.
  • Baudoz P; School of GeoSciences, University of Edinburgh, Edinburgh, UK.
  • Boccaletti A; Institute of Astronomy, KU Leuven, Leuven, Belgium.
  • Cossou C; Université Paris-Saclay, Université Paris Cité, CEA, CNRS, AIM, Gif-sur-Yvette, France.
  • Coulais A; Institute of Astronomy, KU Leuven, Leuven, Belgium.
  • Edwards B; Centre for Exoplanet Science, University of Edinburgh, Edinburgh, UK.
  • Gastaud R; School of GeoSciences, University of Edinburgh, Edinburgh, UK.
  • Glasse A; Department of Astrophysics, University of Vienna, Vienna, Austria.
  • Glauser A; STAR Institute, Université de Liège, Liège, Belgium.
  • Greene TP; Centro de Astrobiología (CAB), CSIC-INTA, Madrid, Spain.
  • Kendrew S; LESIA, Observatoire de Paris, CNRS, Université Paris Cité, Sorbonne Université, Meudon, France.
  • Krause O; LESIA, Observatoire de Paris, CNRS, Université Paris Cité, Sorbonne Université, Meudon, France.
  • Lahuis F; Département d'Electronique des Détecteurs et d'Informatique pour la Physique, Université Paris-Saclay, CEA, Gif-sur-Yvette, France.
  • Mueller M; Université Paris-Saclay, Université Paris Cité, CEA, CNRS, AIM, Gif-sur-Yvette, France.
  • Olofsson G; LERMA, Observatoire de Paris, Université PSL, Sorbonne Université, CNRS, Paris, France.
  • Patapis P; SRON Netherlands Institute for Space Research, Leiden, The Netherlands.
  • Rouan D; Département d'Electronique des Détecteurs et d'Informatique pour la Physique, Université Paris-Saclay, CEA, Gif-sur-Yvette, France.
  • Royer P; UK Astronomy Technology Centre, Royal Observatory Edinburgh, Edinburgh, UK.
  • Scheithauer S; Institute for Particle Physics and Astrophysics, ETH Zürich, Zürich, Switzerland.
  • Waldmann I; Space Science and Astrobiology Division, NASA's Ames Research Center, Moffett Field, CA, USA.
  • Whiteford N; European Space Agency, Space Telescope Science Institute, Baltimore, MD, USA.
  • Colina L; Max-Planck-Institut für Astronomie (MPIA), Heidelberg, Germany.
  • van Dishoeck EF; SRON Netherlands Institute for Space Research, Leiden, The Netherlands.
  • Östlin G; Kapteyn Astronomical Institute, University of Groningen, Groningen, The Netherlands.
  • Ray TP; Department of Astronomy, Stockholm University, AlbaNova University Center, Stockholm, Sweden.
  • Wright G; Institute for Particle Physics and Astrophysics, ETH Zürich, Zürich, Switzerland.
Nature ; 625(7993): 51-54, 2024 Jan.
Article in En | MEDLINE | ID: mdl-37967578
ABSTRACT
WASP-107b is a warm (approximately 740 K) transiting planet with a Neptune-like mass of roughly 30.5 M⊕ and Jupiter-like radius of about 0.94 RJ (refs. 1,2), whose extended atmosphere is eroding3. Previous observations showed evidence for water vapour and a thick, high-altitude condensate layer in the atmosphere of WASP-107b (refs. 4,5). Recently, photochemically produced sulfur dioxide (SO2) was detected in the atmosphere of a hot (about 1,200 K) Saturn-mass planet from transmission spectroscopy near 4.05 µm (refs. 6,7), but for temperatures below about 1,000 K, sulfur is predicted to preferably form sulfur allotropes instead of SO2 (refs. 8-10). Here we report the 9σ detection of two fundamental vibration bands of SO2, at 7.35 µm and 8.69 µm, in the transmission spectrum of WASP-107b using the Mid-Infrared Instrument (MIRI) of JWST. This discovery establishes WASP-107b as the second irradiated exoplanet with confirmed photochemistry, extending the temperature range of exoplanets exhibiting detected photochemistry from about 1,200 K down to about 740 K. Furthermore, our spectral analysis reveals the presence of silicate clouds, which are strongly favoured (around 7σ) over simpler cloud set-ups. Furthermore, water is detected (around 12σ) but methane is not. These findings provide evidence of disequilibrium chemistry and indicate a dynamically active atmosphere with a super-solar metallicity.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nature Year: 2024 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nature Year: 2024 Document type: Article Affiliation country:
...