Your browser doesn't support javascript.
loading
Comprehensive Crystal Regulation Reduces Interfacial Energy Loss for Efficient Blue Perovskite Light-Emitting Diodes.
Tang, Ying-Yi; Shen, Yang; Yu, Yi; Zhang, Kai; Wang, Bing-Feng; Tang, Jian-Xin; Li, Yan-Qing.
Affiliation
  • Tang YY; School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, China.
  • Shen Y; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China.
  • Yu Y; School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, China.
  • Zhang K; Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macau, 999078, China.
  • Wang BF; School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, China.
  • Tang JX; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China.
  • Li YQ; Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macau, 999078, China.
Small ; 20(16): e2309309, 2024 Apr.
Article in En | MEDLINE | ID: mdl-38016075
ABSTRACT
As an essential component of future full-color displays, blue perovskite light-emitting diodes (PeLEDs) still lag far behind the red and green counterparts in the device performances. In the mainstream quasi-2D blue perovskite system, trap-mediated nonradiative loss, low energy transfer efficiency, and interface fluorescence quenching remain significant challenges. Herein, guanidinium thiocyanate (GASCN) and potassium cinnamate (PCA) are respectively introduced into the hole transport layer (HTL) and the perovskite precursor to achieve a dense and uniform perovskite thin film with greatly improved optoelectronic properties. Therefore, adequate GA+ acts as pre-nucleation sites on the HTL surface, regulating crystallization through strong hydrogen bonding with perovskite intermediates. The realized polydisperse domain distribution is conducive to cascade energy transfer, and the improved hole transport ability alleviates interface fluorescence quenching. In addition, the SCN- and CA- groups can form coordination bonds with the defects at the buried perovskite interface and grain boundaries, respectively, which effectively suppresses the detrimental nonradiative recombination. Benefitting from the comprehensive crystal regulation, blue PeLEDs featuring stable emission at 484 and 468 nm exhibit improved external quantum efficiencies of 11.5% and 4.3%, respectively.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Small Journal subject: ENGENHARIA BIOMEDICA Year: 2024 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Small Journal subject: ENGENHARIA BIOMEDICA Year: 2024 Document type: Article Affiliation country: