Your browser doesn't support javascript.
loading
Selective detection of ionic liquid fluorescence probes for visual colorimetry of different metal ions.
Kang, Kaiming; Du, Xiaohan; Shi, Lei; Peng, Zhixiao; Zhang, Xiaojie; Liu, Baoyou; Yue, Gang; Wang, Limin; Wang, Zhiqiang; Chen, Shaohua.
Affiliation
  • Kang K; School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050000, PR China; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang, Hebei, 050000, PR China.
  • Du X; School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050000, PR China; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang, Hebei, 050000, PR China.
  • Shi L; School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050000, PR China; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang, Hebei, 050000, PR China.
  • Peng Z; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang, Hebei, 050000, PR China; School of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050000, PR China.
  • Zhang X; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang, Hebei, 050000, PR China; School of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050000, PR China.
  • Liu B; School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050000, PR China; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang, Hebei, 050000, PR China. Electronic address: lby7150@sina.com.
  • Yue G; School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050000, PR China; Ningxia Hui Autonomous Region Screen Display Organic Materials Engineering Technology Research Center, Ningxia Sinostar Display Material Co., Ltd, Yinchuan, Ningxia, 75
  • Wang L; Ningxia Hui Autonomous Region Screen Display Organic Materials Engineering Technology Research Center, Ningxia Sinostar Display Material Co., Ltd, Yinchuan, Ningxia, 750000, PR China.
  • Wang Z; Ningxia Hui Autonomous Region Screen Display Organic Materials Engineering Technology Research Center, Ningxia Sinostar Display Material Co., Ltd, Yinchuan, Ningxia, 750000, PR China.
  • Chen S; Ningxia Hui Autonomous Region Screen Display Organic Materials Engineering Technology Research Center, Ningxia Sinostar Display Material Co., Ltd, Yinchuan, Ningxia, 750000, PR China.
Environ Res ; 242: 117791, 2024 Feb 01.
Article in En | MEDLINE | ID: mdl-38043897
ABSTRACT
At present, the fast distinction of different metal ions in pure water media is not only a great challenge, but also drives the protection of water quality in environmental water bodies. In this paper, a novel ionic liquid fluorescent probe Glycolic Acid-L-Arginine (GA-L-Arg) was rationally created and designed through an in-depth study of ionic liquids. It is also used as an innovative multi-ion fluorescent probe for colorimetric detection and separate identification of Fe3+ and Co2+ in aqueous solutions of various metal ions. GA-L-Arg has excellent water solubility due to the strong hydrophilicity of Glycolic Acid and L-Arginine. The probe showed high sensitivity, extremely significant selectivity, and great pH stability for Fe3+ and Co2+ in pure water. The GA-L-Arg structure and the mechanism of Fe3+ and Co2+ detection were analyzed by infrared spectroscopic characterization and quantum chemical calculations. More importantly, the distinct colorimetric partitioning of Fe3+ and Co2+ was performed by the unique extraction of Fe3+ in the presence of the fluorescent probe and buffer solution.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Ionic Liquids / Glycolates Language: En Journal: Environ Res Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Ionic Liquids / Glycolates Language: En Journal: Environ Res Year: 2024 Document type: Article