Your browser doesn't support javascript.
loading
Hot-Pressing Metal Covalent Organic Frameworks as Personal Protection Films.
Wang, Jiajia; Li, Li; Xu, Chuanshan; Jiang, Hong; Xie, Qin-Xie; Yang, Xin-Yi; Li, Ji-Cheng; Xu, Huiying; Chen, Yifa; Yi, Wei; Hong, Xu-Jia; Lan, Ya-Qian.
Affiliation
  • Wang J; The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China.
  • Li L; The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China.
  • Xu C; The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China.
  • Jiang H; The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China.
  • Xie QX; The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China.
  • Yang XY; The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China.
  • Li JC; The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China.
  • Xu H; The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China.
  • Chen Y; National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG(GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China.
  • Yi W; The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China.
  • Hong XJ; The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China.
  • Lan YQ; National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG(GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China.
Adv Mater ; 36(13): e2311519, 2024 Mar.
Article in En | MEDLINE | ID: mdl-38127976
ABSTRACT
Effective personal protection is crucial for controlling infectious disease spread. However, commonly used personal protective materials such as disposable masks lack antibacterial/antiviral function and may lead to cross infection. Herein, a polyethylene glycol-assisted solvent-free strategy is proposed to rapidly synthesize a series of the donor-acceptor metal-covalent organic frameworks (MCOFs) (i.e., GZHMU-2, JNM-1, and JNM-2) under air atmosphere and henceforth extend it via in situ hot-pressing process to prepare MCOFs based films with photocatalytic disinfect ability. Best of them, the newly designed GZHMU-2 has a wide absorption spectrum (200 to 1500 nm) and can efficiently produce reactive oxygen species under sunlight irradiation, achieving excellent photocatalytic disinfection performance. After in situ hot-pressing as a film material, the obtained GZHMU-2/NMF can effectively kill E. coli (99.99%), S. aureus (99%), and H1N1 (92.5%), meanwhile possessing good reusability. Noteworthy, the long-term use of a GZHMU-2/NWF-based mask has verified no damage to the living body by measuring the expression of mouse blood routine, lung tissue, and inflammatory factors at the in-vivo level.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Influenza A Virus, H1N1 Subtype / Metal-Organic Frameworks Limits: Animals Language: En Journal: Adv Mater Journal subject: BIOFISICA / QUIMICA Year: 2024 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Influenza A Virus, H1N1 Subtype / Metal-Organic Frameworks Limits: Animals Language: En Journal: Adv Mater Journal subject: BIOFISICA / QUIMICA Year: 2024 Document type: Article Affiliation country: