Your browser doesn't support javascript.
loading
Biomimetic Self-Maturation Mineralization System for Enamel Repair.
Lei, Chen; Wang, Kai-Yan; Ma, Yu-Xuan; Hao, Dong-Xiao; Zhu, Yi-Na; Wan, Qian-Qian; Zhang, Jiang-Shan; Tay, Franklin R; Mu, Zhao; Niu, Li-Na.
Affiliation
  • Lei C; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
  • Wang KY; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
  • Ma YX; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
  • Hao DX; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
  • Zhu YN; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
  • Wan QQ; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
  • Zhang JS; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
  • Tay FR; The Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA.
  • Mu Z; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
  • Niu LN; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
Adv Mater ; 36(16): e2311659, 2024 Apr.
Article in En | MEDLINE | ID: mdl-38175183
ABSTRACT
Enamel repair is crucial for restoring tooth function and halting dental caries. However, contemporary research often overlooks the retention of organic residues within the repair layer, which hinders the growth of dense crystals and compromises the properties of the repaired enamel. During the maturation of natural enamel, the organic matrix undergoes enzymatic processing to facilitate further crystal growth, resulting in a highly mineralized tissue. Inspired by this process, a biomimetic self-maturation mineralization system is developed, comprising ribonucleic acid-stabilized amorphous calcium phosphate (RNA-ACP) and ribonuclease (RNase). The RNA-ACP induces initial mineralization in the form of epitaxial crystal growth, while the RNase present in saliva automatically triggers a biomimetic self-maturation process. The mechanistic study further indicates that RNA degradation prompts conformational rearrangement of the RNA-ACP, effectively excluding the organic matter introduced earlier. This exclusion process promotes lateral crystal growth, resulting in the generation of denser enamel-like apatite crystals that are devoid of organic residues. This strategy of eliminating organic residues from enamel crystals enhances the mechanical and physiochemical properties of the repaired enamel. The present study introduces a conceptual biomimetic mineralization strategy for effective enamel repair in clinical practice and offers potential insights into the mechanisms of biomineral formation.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Calcium Phosphates / Dental Caries / Biomimetics Limits: Humans Language: En Journal: Adv Mater Journal subject: BIOFISICA / QUIMICA Year: 2024 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Calcium Phosphates / Dental Caries / Biomimetics Limits: Humans Language: En Journal: Adv Mater Journal subject: BIOFISICA / QUIMICA Year: 2024 Document type: Article Affiliation country:
...