Your browser doesn't support javascript.
loading
Mannose-Integrated Nanoparticle Hitchhike Glucose Transporter 1 Recycling to Overcome Various Barriers of Oral Delivery for Alzheimer's Disease Therapy.
Lei, Ting; Yang, Zixiao; Jiang, Chaoqing; Wang, Xiaorong; Yang, Wenqin; Yang, Xiaotong; Xie, Rou; Tong, Fan; Xia, Xue; Huang, Qianqian; Du, Yufan; Huang, Yuan; Gao, Huile.
Affiliation
  • Lei T; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Chi
  • Yang Z; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Chi
  • Jiang C; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Chi
  • Wang X; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Chi
  • Yang W; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Chi
  • Yang X; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Chi
  • Xie R; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Chi
  • Tong F; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Chi
  • Xia X; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Chi
  • Huang Q; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Chi
  • Du Y; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Chi
  • Huang Y; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Chi
  • Gao H; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Chi
ACS Nano ; 18(4): 3234-3250, 2024 Jan 30.
Article in En | MEDLINE | ID: mdl-38214975
ABSTRACT
A brain-targeting nanodelivery system has been a hot topic and has undergone rapid progression. However, due to various obstacles such as the intestinal epithelial barrier (IEB) and the blood-brain barrier (BBB), few nanocarriers can achieve brain-targeting through oral administration. Herein, an intelligent oral brain-targeting nanoparticle (FTY@Man NP) constructed from a PLGA-PEG skeleton loaded with fingolimod (FTY) and externally modified with mannose was designed in combination with a glucose control strategy for the multitarget treatment of Alzheimer's disease (AD). The hydrophilic and electronegative properties of the nanoparticle facilitated its facile penetration through the mucus barrier, while the mannose ligand conferred IEB targeting abilities to the nanoparticle. Subsequently, glycemic control allowed the mannose-integrated nanoparticle to hitchhike the glucose transporter 1 (GLUT1) circulation across the BBB. Finally, the released FTY modulated the polarity of microglia from pro-inflammatory M1 to anti-inflammatory M2 and normalized the activated astrocyte, enhancing the clearance of toxic protein Amyloid-ß (Aß) while alleviating oxidative stress and neuroinflammation. Notably, both in vitro and in vivo results have consistently demonstrated that the oral administration of FTY@Man NP could effectively traverse the multiple barriers, thereby exerting significant therapeutic effects. This breakthrough holds the promise of realizing a highly effective orally administered treatment for AD.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Nanoparticles / Alzheimer Disease Aspects: Implementation_research Limits: Humans Language: En Journal: ACS Nano Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Nanoparticles / Alzheimer Disease Aspects: Implementation_research Limits: Humans Language: En Journal: ACS Nano Year: 2024 Document type: Article