Evaluation of Surface-Induced Dissociation Ion Mobility-Mass Spectrometry for Lipid Structural Characterization.
J Am Soc Mass Spectrom
; 35(2): 214-223, 2024 Feb 07.
Article
in En
| MEDLINE
| ID: mdl-38215279
ABSTRACT
The complexity of the lipidome has necessitated the development of novel analytical approaches for the identification and structural analysis of morphologically diverse classes of lipids. At this time, a variety of dissociation techniques have been utilized to probe lipid decomposition pathways in search of structurally diagnostic fragment ions. Here, we investigate the application of surface-induced dissociation (SID), a fragmentation technique that imparts energy to the target molecule via collision with a coated surface, for the fragmentation of seven lipids across four major lipid subclasses. We have developed a tuning methodology for guiding the efficient operation of a previously developed custom SID device for molecules as small as ca. 300 Da with ion mobility analysis of the fragmentation products. SID fragmentation of the various lipids analyzed was found to generate fragment ions similar to those observed in CID spectra, but fragment ion lab frame onset energies were lower in SID due to the higher energy deposition via a more massive target. For the largest lipid evaluated (cardiolipin 181), SID produced chain fragment ions, which yielded analytically useful information regarding the composition of the acyl tails. Ion mobility provided an orthogonal dimension of separation and aided in assigning product ions to their precursors. Overall, the combination of SID and IM-MS is another potential methodology in the analytical toolkit for lipid structural analysis.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Ion Mobility Spectrometry
/
Lipids
Language:
En
Journal:
J Am Soc Mass Spectrom
Year:
2024
Document type:
Article
Affiliation country:
Country of publication: