Your browser doesn't support javascript.
loading
Macrophage Tim-3 maintains intestinal homeostasis in DSS-induced colitis by suppressing neutrophil necroptosis.
Wang, Fangfei; Zhou, Feng; Peng, Jianxiang; Chen, Hao; Xie, Jinliang; Liu, Cong; Xiong, Huifang; Chen, Sihai; Xue, Guohui; Zhou, Xiaojiang; Xie, Yong.
Affiliation
  • Wang F; Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China; Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi Medical Col
  • Zhou F; Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China; Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi Medical Col
  • Peng J; Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China; Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi Medical Col
  • Chen H; Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China; Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi Medical Col
  • Xie J; Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China; Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi Medical Col
  • Liu C; Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China; Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi Medical Col
  • Xiong H; Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China; Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi Medical Col
  • Chen S; Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China; Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi Medical Col
  • Xue G; Department of Clinical Laboratory, Affiliated Jiujiang Hospital of Nanchang University, Jiujiang, Jiangxi Province, China.
  • Zhou X; Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China; Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi Medical Col
  • Xie Y; Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China; Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi Medical Col
Redox Biol ; 70: 103072, 2024 Apr.
Article in En | MEDLINE | ID: mdl-38330550
ABSTRACT
T-cell immunoglobulin domain and mucin domain-3 (Tim-3) is a versatile immunomodulator that protects against intestinal inflammation. Necroptosis is a type of cell death that regulates intestinal homeostasis and inflammation. The mechanism(s) underlying the protective role of macrophage Tim-3 in intestinal inflammation is unclear; thus, we investigated whether specific Tim-3 knockdown in macrophages drives intestinal inflammation via necroptosis. Tim-3 protein and mRNA expression were assessed via double immunofluorescence staining and single-cell RNA sequencing (sc-RNA seq), respectively, in the colonic tissues of patients with inflammatory bowel disease (IBD) and healthy controls. Macrophage-specific Tim3-knockout (Tim-3M-KO) mice were generated to explore the function and mechanism of Tim-3 in dextran sodium sulfate (DSS)-induced colitis. Necroptosis was blocked by pharmacological inhibitors of receptor-interacting protein kinase (RIP)1, RIP3, and reactive oxygen species (ROS). Additionally, in vitro experiments were performed to assess the mechanisms of neutrophil necroptosis induced by Tim-3 knockdown macrophages. Although Tim-3 is relatively inactive in macrophages during colon homeostasis, it is highly active during colitis. Compared to those in controls, Tim-3M-KO mice showed increased susceptibility to colitis, higher colitis scores, and increased pro-inflammatory mediator expression. Following the administration of RIP1/RIP3 or ROS inhibitors, a significant reduction in intestinal inflammation symptoms was observed in DSS-treated Tim-3M-KO mice. Further analysis indicated the TLR4/NF-κB pathway in Tim-3 knockdown macrophages mediates the TNF-α-induced necroptosis pathway in neutrophils. Macrophage Tim-3 regulates neutrophil necroptosis via intracellular ROS signaling. Tim-3 knockdown macrophages can recruit neutrophils and induce neutrophil necroptosis, thereby damaging the intestinal mucosal barrier and triggering a vicious cycle in the development of colitis. Our results demonstrate a protective role of macrophage Tim-3 in maintaining gut homeostasis by inhibiting neutrophil necroptosis and provide novel insights into the pathogenesis of IBD.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Inflammatory Bowel Diseases / Colitis / Hepatitis A Virus Cellular Receptor 2 Limits: Animals / Humans Language: En Journal: Redox Biol Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Inflammatory Bowel Diseases / Colitis / Hepatitis A Virus Cellular Receptor 2 Limits: Animals / Humans Language: En Journal: Redox Biol Year: 2024 Document type: Article