Your browser doesn't support javascript.
loading
Functional-Group-Directed Regiodivergent (3 + 2) Annulations of Electronically Distinct 1,3-Dienes and 2-Formyl Arylboronic Acids.
Liang, Shu-Yuan; Zhang, Tian-Ying; Chen, Zhi-Chao; Du, Wei; Chen, Ying-Chun.
Affiliation
  • Liang SY; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
  • Zhang TY; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
  • Chen ZC; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
  • Du W; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
  • Chen YC; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
Org Lett ; 26(7): 1483-1488, 2024 Feb 23.
Article in En | MEDLINE | ID: mdl-38345825
ABSTRACT
Presented herein is a palladium-catalyzed asymmetric (3 + 2) annulation reaction between 1,3-dienes and 2-formylarylboronic acids, proceeding in a cascade vinylogous addition and Suzuki coupling process. Both electron-neutral and electron-deficient 1,3-dienes are compatible under similar catalytic conditions, and distinct regioselectivity is observed via functional-group control of 1,3-diene substrates. A collection of 1-indanols with dense functionalities is constructed stereoselectively.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Org Lett Journal subject: BIOQUIMICA Year: 2024 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Org Lett Journal subject: BIOQUIMICA Year: 2024 Document type: Article Affiliation country: