Your browser doesn't support javascript.
loading
Acid phosphatase involved in phosphate homeostasis in Brassica napus and the functional analysis of BnaPAP10s.
Zhang, Hao; He, Xuyou; Munyaneza, Venuste; Zhang, Guangzeng; Ye, Xiangsheng; Wang, Chuang; Shi, Lei; Wang, Xu; Ding, Guangda.
Affiliation
  • Zhang H; College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China.
  • He X; College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China.
  • Munyaneza V; College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China.
  • Zhang G; College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China.
  • Ye X; College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China.
  • Wang C; College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China.
  • Shi L; College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China.
  • Wang X; Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, 510000, Guangdong, China.
  • Ding G; College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China. Electronic address: dgd@mail.hzau.edu.cn.
Plant Physiol Biochem ; 208: 108389, 2024 Mar.
Article in En | MEDLINE | ID: mdl-38377886
ABSTRACT
Purple acid phosphatases (PAPs) are involved in activating the rhizosphere's organic phosphorus (P) and promoting P recycling during plant development, especially under the long-term P deficiency conditions in acid soil. However, the function of BnaPAPs in response to P deficiency stress in Brassica napus has rarely been explored. In this study, we found that the acid phosphatase activities (APA) of rapeseed shoot and root increased under P deficienct conditions. Genome-wide identification found that 82 PAP genes were unevenly distributed on 19 chromosomes in B. napus, which could be divided into eight subfamilies. The segmental duplication events were the main driving force for expansion during evolution, and the gene structures and conserved motifs of most members within the same subfamily were highly conservative. Moreover, the expression levels of 37 and 23 different expressed genes were induced by low P in leaf and root, respectively. BnaA09.PAP10a and BnaC09.PAP10a were identified as candidate genes via interaction networks. Significantly, both BnaPAP10a overexpression lines significantly increased root-related APA and total phosphate concentration under P deficiency and ATP supply conditions, thereby improving plant growth and root length. In summary, our results provided a valuable foundation for further study of BnaPAP functions.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Brassica napus Language: En Journal: Plant Physiol Biochem Journal subject: BIOQUIMICA / BOTANICA Year: 2024 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Brassica napus Language: En Journal: Plant Physiol Biochem Journal subject: BIOQUIMICA / BOTANICA Year: 2024 Document type: Article Affiliation country:
...