Your browser doesn't support javascript.
loading
The AsiDNA™ decoy mimicking DSBs protects the normal tissue from radiation toxicity through a DNA-PK/p53/p21-dependent G1/S arrest.
Sesink, Anouk; Becerra, Margaux; Ruan, Jia-Ling; Leboucher, Sophie; Dubail, Maxime; Heinrich, Sophie; Jdey, Wael; Petersson, Kristoffer; Fouillade, Charles; Berthault, Nathalie; Dutreix, Marie; Girard, Pierre-Marie.
Affiliation
  • Sesink A; Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France.
  • Becerra M; Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France.
  • Ruan JL; Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France.
  • Leboucher S; Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France.
  • Dubail M; Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, UK.
  • Heinrich S; Histology platform, Institut Curie, CNRS UMR3348, 91405 Orsay, France.
  • Jdey W; Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France.
  • Petersson K; Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France.
  • Fouillade C; Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France.
  • Berthault N; Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France.
  • Dutreix M; Valerio Therapeutics, 49 Bd du Général Martial Valin, 75015 Paris, France.
  • Girard PM; Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, UK.
NAR Cancer ; 6(1): zcae011, 2024 Mar.
Article in En | MEDLINE | ID: mdl-38476631
ABSTRACT
AsiDNA™, a cholesterol-coupled oligonucleotide mimicking double-stranded DNA breaks, was developed to sensitize tumour cells to radio- and chemotherapy. This drug acts as a decoy hijacking the DNA damage response. Previous studies have demonstrated that standalone AsiDNA™ administration is well tolerated with no additional adverse effects when combined with chemo- and/or radiotherapy. The lack of normal tissue complication encouraged further examination into the role of AsiDNA™ in normal cells. This research demonstrates the radioprotective properties of AsiDNA™. In vitro, AsiDNA™ induces a DNA-PK/p53/p21-dependent G1/S arrest in normal epithelial cells and fibroblasts that is absent in p53 deficient and proficient tumour cells. This cell cycle arrest improved survival after irradiation only in p53 proficient normal cells. Combined administration of AsiDNA™ with conventional radiotherapy in mouse models of late and early radiation toxicity resulted in decreased onset of lung fibrosis and increased intestinal crypt survival. Similar results were observed following FLASH radiotherapy in standalone or combined with AsiDNA™. Mechanisms comparable to those identified in vitro were detected both in vivo, in the intestine and ex vivo, in precision cut lung slices. Collectively, the results suggest that AsiDNA™ can partially protect healthy tissues from radiation toxicity by triggering a G1/S arrest in normal cells.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: NAR Cancer Year: 2024 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: NAR Cancer Year: 2024 Document type: Article Affiliation country: