Your browser doesn't support javascript.
loading
Inversion of the Warburg Effect: Unraveling the Metabolic Nexus between Obesity and Cancer.
Akter, Reshmi; Awais, Muhammad; Boopathi, Vinothini; Ahn, Jong Chan; Yang, Deok Chun; Kang, Se Chan; Yang, Dong Uk; Jung, Seok-Kyu.
Affiliation
  • Akter R; Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggido, Republic of Korea.
  • Awais M; Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggido, Republic of Korea.
  • Boopathi V; Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggido, Republic of Korea.
  • Ahn JC; Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggido, Republic of Korea.
  • Yang DC; Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggido, Republic of Korea.
  • Kang SC; Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggido, Republic of Korea.
  • Yang DU; AIBIOME, 6, Jeonmin-ro 30beon-gil, Yuseong-gu 34214, Daejeon, Republic of Korea.
  • Jung SK; Department of Horticulture, Kongju National University, Yesan 32588,Chungcheongnam-do, Republic of Korea.
ACS Pharmacol Transl Sci ; 7(3): 560-569, 2024 Mar 08.
Article in En | MEDLINE | ID: mdl-38481689
ABSTRACT
Obesity is a well-established risk factor for cancer, significantly impacting both cancer incidence and mortality. However, the intricate molecular mechanisms connecting adipose tissue to cancer cell metabolism are not fully understood. This Review explores the historical context of tumor energy metabolism research, tracing its origins to Otto Warburg's pioneering work in 1920. Warburg's discovery of the "Warburg effect", wherein cancer cells prefer anaerobic glycolysis even in the presence of oxygen, laid the foundation for understanding cancer metabolism. Building upon this foundation, the "reverse Warburg effect" emerged in 2009, elucidating the role of aerobic glycolysis in cancer-associated fibroblasts (CAFs) and its contribution to lactate accumulation in the tumor microenvironment, subsequently serving as a metabolic substrate for cancer cells. In contrast, within high-adiposity contexts, cancer cells exhibit a unique metabolic shift termed the "inversion of the Warburg effect". This phenomenon, distinct from the stromal-dependent reverse Warburg effect, relies on increased nutrient abundance in obesity environments, leading to the generation of glucose from lactate as a metabolic substrate. This Review underscores the heightened tumor proliferation and aggressiveness associated with obesity, introducing the "inversion of the Warburg effect" as a novel mechanism rooted in the altered metabolic landscape within an obese milieu. The insights presented here open promising avenues for therapeutic exploration, offering fresh perspectives and opportunities for the development of innovative cancer treatment strategies.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Pharmacol Transl Sci Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Pharmacol Transl Sci Year: 2024 Document type: Article