Your browser doesn't support javascript.
loading
Clostridium butyricum inhibits the inflammation in children with primary nephrotic syndrome by regulating Th17/Tregs balance via gut-kidney axis.
Li, Ting; Ma, Xiaolong; Wang, Ting; Tian, Wenyan; Liu, Jian; Shen, Wenke; Liu, Yuanyuan; Li, Yiwei; Zhang, Xiaoxu; Ma, Junbai; Zhang, Xiaoxia; Ma, Jinhai; Wang, Hao.
Affiliation
  • Li T; Department of Pediatrics, The First Clinical College of Ningxia Medical University, General Hospital of Ningxia Medical University, Yinchuan, China.
  • Ma X; Department of Pediatrics, General Hospital of Ningxia Medical University, Yinchuan, 750004, China.
  • Wang T; Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.
  • Tian W; Department of Gastroenterology, The First Clinical College of Ningxia Medical University, General Hospital of Ningxia Medical University, Yinchuan, China.
  • Liu J; Department of Hepatobiliary, The First Clinical College of Ningxia Medical University, General Hospital of Ningxia Medical University, Yinchuan, China.
  • Shen W; Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.
  • Liu Y; Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.
  • Li Y; Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.
  • Zhang X; Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China.
  • Ma J; Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.
  • Zhang X; College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China. zxx1216@163.com.
  • Ma J; Department of Pediatrics, General Hospital of Ningxia Medical University, Yinchuan, 750004, China. makhcn@163.com.
  • Wang H; Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China. wanghaograduate@126.com.
BMC Microbiol ; 24(1): 97, 2024 Mar 23.
Article in En | MEDLINE | ID: mdl-38521894
ABSTRACT

BACKGROUND:

Primary nephrotic syndrome (PNS) is a common glomerular disease in children. Clostridium butyricum (C. butyricum), a probiotic producing butyric acid, exerts effective in regulating inflammation. This study was designed to elucidate the effect of C. butyricum on PNS inflammation through the gut-kidney axis.

METHOD:

BALB/c mice were randomly divided into 4 groups normal control group (CON), C. butyricum control group (CON+C. butyricum), PNS model group (PNS), and PNS with C. butyricum group (PNS+C. butyricum). The PNS model was established by a single injection of doxorubicin hydrochloride (DOX) through the tail vein. After 1 week of modeling, the mice were treated with C. butyricum for 6 weeks. At the end of the experiment, the mice were euthanized and associated indications were investigated.

RESULTS:

Since the successful modeling of the PNS, the 24 h urine protein, blood urea nitrogen (BUN), serum creatinine (SCr), urine urea nitrogen (UUN), urine creatinine (UCr), lipopolysaccharides (LPS), pro-inflammatory interleukin (IL)-6, IL-17A were increased, the kidney pathological damage was aggravated, while a reduction of body weights of the mice and the anti-inflammatory IL-10 significantly reduced. However, these abnormalities could be dramatically reversed by C. butyricum treatment. The crucial Th17/Tregs axis in PNS inflammation also was proved to be effectively regulated by C. butyricum treatment. This probiotic intervention notably affected the expression levels of signal transducer and activator of transcription 3 (STAT3), Heme oxygenase-1 (HO-1) protein, and retinoic acid-related orphan receptor gamma t (RORγt). 16S rRNA sequencing showed that C. butyricum could regulate the composition of the intestinal microbial community and found Proteobacteria was more abundant in urine microorganisms in mice with PNS. Short-chain fatty acids (SCFAs) were measured and showed that C. butyricum treatment increased the contents of acetic acid, propionic acid, butyric acid in feces, acetic acid, and valeric acid in urine. Correlation analysis showed that there was a closely complicated correlation among inflammatory indicators, metabolic indicators, microbiota, and associated metabolic SCFAs in the gut-kidney axis.

CONCLUSION:

C. butyricum regulates Th17/Tregs balance via the gut-kidney axis to suppress the immune inflammatory response in mice with PNS, which may potentially contribute to a safe and inexpensive therapeutic agent for PNS.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Clostridium butyricum / Nephrotic Syndrome Limits: Animals / Child / Humans Language: En Journal: BMC Microbiol Journal subject: MICROBIOLOGIA Year: 2024 Document type: Article Affiliation country: Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Clostridium butyricum / Nephrotic Syndrome Limits: Animals / Child / Humans Language: En Journal: BMC Microbiol Journal subject: MICROBIOLOGIA Year: 2024 Document type: Article Affiliation country: Country of publication: