Your browser doesn't support javascript.
loading
Regulating the Electronic Structure of MAX Phases Based on Rare Earth Element Sc to Enhance Electromagnetic Wave Absorption.
Li, Youbing; Wei, Haoshuai; Chen, Lu; Xie, Chaoyin; Ding, Haoming; Fang, Fei; Chai, Zhifang; Huang, Qing.
Affiliation
  • Li Y; Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China.
  • Wei H; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.
  • Chen L; Qianwan Institute of CNiTECH, Ningbo, Zhejiang 315336, China.
  • Xie C; Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China.
  • Ding H; Qianwan Institute of CNiTECH, Ningbo, Zhejiang 315336, China.
  • Fang F; Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China.
  • Chai Z; Qianwan Institute of CNiTECH, Ningbo, Zhejiang 315336, China.
  • Huang Q; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.
ACS Nano ; 18(14): 10019-10030, 2024 Apr 09.
Article in En | MEDLINE | ID: mdl-38545930
ABSTRACT
MAX phases are highly promising materials for electromagnetic (EM) wave absorption because of their specific combination of metal and ceramic properties, making them particularly suitable for harsh environments. However, their higher matching thickness and impedance mismatching can limit their ability to attenuate EM waves. To address this issue, researchers have focused on regulating the electronic structure of MAX phases through structural engineering. In this study, we successfully synthesized a ternary MAX phase known as Sc2GaC MAX with the rare earth element Sc incorporated into the M-site sublayer, resulting in exceptional conductivity and impressive stability at high temperatures. The Sc2GaC demonstrates a strong reflection loss (RL) of -47.7 dB (1.3 mm) and an effective absorption bandwidth (EAB) of 5.28 GHz. It also achieves effective absorption of EM wave energy across a wide frequency range, encompassing the X and Ku bands. This exceptional performance is observed within a thickness range of 1.3 to 2.1 mm, making it significantly superior to other Ga-MAX phases. Furthermore, Sc2GaC exhibited excellent absorption performance even at elevated temperatures. After undergoing oxidation at 800 °C, it achieves a minimum RL of -28.3 dB. Conversely, when treated at 1400 °C under an argon atmosphere, Sc2GaC demonstrates even higher performance, with a minimum RL of -46.1 dB. This study highlights the potential of structural engineering to modify the EM wave absorption performance of the MAX phase by controlling its intrinsic electronic structure.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Nano Year: 2024 Document type: Article Affiliation country: Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Nano Year: 2024 Document type: Article Affiliation country: Country of publication: