Your browser doesn't support javascript.
loading
A Computational and Chemical Design Strategy for Manipulating Glycan-Protein Recognition.
Zhu, Qiang; Geng, Didi; Li, Jingchao; Zhang, Jinqiu; Sun, Haofan; Fan, Zhiya; He, Jiahui; Hao, Ninghui; Tian, Yinping; Wen, Liuqing; Li, Tiehai; Qin, Weijie; Chu, Xiakun; Wang, Yong; Yi, Wen.
Affiliation
  • Zhu Q; Departments of Biochemistry & Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, 310012, China.
  • Geng D; Departments of Biochemistry & Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, 310012, China.
  • Li J; Departments of Biochemistry & Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, 310012, China.
  • Zhang J; Departments of Biochemistry & Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, 310012, China.
  • Sun H; National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 100026, China.
  • Fan Z; National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 100026, China.
  • He J; Departments of Biochemistry & Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, 310012, China.
  • Hao N; The Provincial International Science and Technology Cooperation Base on Engineering Biology, Shanghai Institute for Advanced Study, Institute of Quantitative Biology, International Campus of Zhejiang University, Haining, 314499, China.
  • Tian Y; Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
  • Wen L; Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
  • Li T; Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
  • Qin W; National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 100026, China.
  • Chu X; Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Guangzhou, 511400, China.
  • Wang Y; Departments of Biochemistry & Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, 310012, China.
  • Yi W; The Provincial International Science and Technology Cooperation Base on Engineering Biology, Shanghai Institute for Advanced Study, Institute of Quantitative Biology, International Campus of Zhejiang University, Haining, 314499, China.
Adv Sci (Weinh) ; 11(24): e2308522, 2024 Jun.
Article in En | MEDLINE | ID: mdl-38582526
ABSTRACT
Glycans are complex biomolecules that encode rich information and regulate various biological processes, such as fertilization, host-pathogen binding, and immune recognition, through interactions with glycan-binding proteins. A key driving force for glycan-protein recognition is the interaction between the π electron density of aromatic amino acid side chains and polarized C─H groups of the pyranose (termed the CH-π interaction). However, the relatively weak binding affinity between glycans and proteins has hindered the application of glycan detection and imaging. Here, computational modeling and molecular dynamics simulations are employed to design a chemical strategy that enhances the CH-π interaction between glycans and proteins by genetically incorporating electron-rich tryptophan derivatives into a lectin PhoSL, which specifically recognizes core fucosylated N-linked glycans. This significantly enhances the binding affinity of PhoSL with the core fucose ligand and enables sensitive detection and imaging of core fucosylated glycans in vitro and in xenograft tumors in mice. Further, the study showed that this strategy is applicable to improve the binding affinity of GafD lectin for N-acetylglucosamine-containing glycans. The approach thus provides a general and effective way to manipulate glycan-protein recognition for glycoscience applications.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Polysaccharides Limits: Animals / Humans Language: En Journal: Adv Sci (Weinh) Year: 2024 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Polysaccharides Limits: Animals / Humans Language: En Journal: Adv Sci (Weinh) Year: 2024 Document type: Article Affiliation country: