Sustainable Harnessing of Waste Polycarbonate for Synthesizing Activated Furans to Generate Stenhouse Adducts on Polymer Surface.
Chem Asian J
; 19(13): e202400369, 2024 Jul 02.
Article
in En
| MEDLINE
| ID: mdl-38595045
ABSTRACT
Plastics are versatile materials, offering lightweight, durable, and affordable solutions across various industries. However, their non-degradable nature poses challenges by end of their life. This study presented an innovative carbonyl extraction method to utilize waste poly(bisphenol A carbonate) (PC) as reaction precursor to synthesis of activated furan as precursor for photoswitchable Stenhouse adducts. This innovative chemical strategy not only generated N,N'-functionalized barbiturates but also provided an eco-friendly and cost-effective alternative to traditional synthesis methods. The method presented hereby not only promotes sustainability by repurposing waste polycarbonate as carbonyl equivalent under green conditions but also yielded reusable bisphenol A (BPA). Furthermore, the derived activated furans exhibited their functionality by forming colored donor-acceptor Stenhouse adducts (DASAs) on aminated polymer surfaces. This work demonstrated a transition from a linear plastics economy toward a circular one, highlighting the potential of plastic waste as a resource for creating materials with improved properties.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
Chem Asian J
Year:
2024
Document type:
Article
Affiliation country:
Country of publication: