Your browser doesn't support javascript.
loading
On reactive Ion Etching of Parylene-C with Simple Photoresist Mask for Fabrication of High Porosity Membranes to Capture Circulating and Exfoliated Tumor Cells.
Rabadi, Inad; Carpentieri, David; Wang, Jue; Zenhausern, Frederic; Gu, Jian.
Affiliation
  • Rabadi I; Center for Applied NanoBioscience and Medicine, The University of Arizona College of Medicine, Phoenix, AZ 85004, USA.
  • Carpentieri D; Department of Basic Medical Sciences, The University of Arizona College of Medicine, Phoenix, AZ 85004, USA.
  • Wang J; Phoenix Children's Hospital, Phoenix, AZ 85016, USA.
  • Zenhausern F; Dignity Health-Cancer Institute at St. Joseph's Hospital and Medical Center, Phoenix, AZ 85004, USA.
  • Gu J; Center for Applied NanoBioscience and Medicine, The University of Arizona College of Medicine, Phoenix, AZ 85004, USA.
Micromachines (Basel) ; 15(4)2024 Apr 13.
Article in En | MEDLINE | ID: mdl-38675332
ABSTRACT
A high porosity micropore arrayed parylene membrane is a promising device that is used to capture circulating and exfoliated tumor cells (CTCs and ETCs) for liquid biopsy applications. However, its fabrication still requires either expensive equipment or an expensive process. Here, we report on the fabrication of high porosity (>40%) micropore arrayed parylene membranes through a simple reactive ion etching (RIE) that uses photoresist as the etching mask. Vertical sidewalls were observed in etched parylene pores despite the sloped photoresist mask sidewalls, which was found to be due to the simultaneous high DC-bias RIE induced photoresist melting and substrate pedestal formation. A theoretical model has been derived to illustrate the dependence of the maximum membrane thickness on the final pore-to-pore spacing, and it is consistent with the experimental data. A simple, yet accurate, low number (<50) cell counting method was demonstrated through counting cells directly inside a pipette tip under phase-contrast microscope. Membranes as thin as 3 µm showed utility for low number tumor cell capture, with an efficiency of 87-92%.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Micromachines (Basel) Year: 2024 Document type: Article Affiliation country: Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Micromachines (Basel) Year: 2024 Document type: Article Affiliation country: Country of publication: