Your browser doesn't support javascript.
loading
Durable and Robust Antibacterial Polypropylene Hernia Mesh for Abdominal Wall Defect Repair.
Ding, Rui; Yu, Luofeng; Peng, Pandi; Zhang, Jiajun; Xu, Haoqi; Li, Haoyu; Wu, Hanxue; Yan, Likun; Li, Peng.
Affiliation
  • Ding R; Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an 710072, China.
  • Yu L; Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an 710072, China.
  • Peng P; Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an 710072, China.
  • Zhang J; Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an 710072, China.
  • Xu H; Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an 710072, China.
  • Li H; Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an 710072, China.
  • Wu H; Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an 710072, China.
  • Yan L; Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an 710068, China.
  • Li P; Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an 710072, China.
ACS Appl Mater Interfaces ; 16(20): 25686-25697, 2024 May 22.
Article in En | MEDLINE | ID: mdl-38739862
ABSTRACT
Polypropylene (PP) mesh is commonly used in repairing abdominal wall hernia (AWH). However, the use of synthetic prosthesis comes with the risk of developing a prosthetic infection, resulting in delayed healing, secondary surgery, and potentially increased mortality. To address these issues, a facile surface functionalization strategy for PP mesh based on phytic acid (PA) and polyhexamethylene guanidine (PHMG) was constructed through a one-step co-deposition process, referred to as the PA/PHMG coating. The development of PA/PHMG coating is mainly attributed to the surface affinity of PA and the electrostatic interactions between PA and PHMG. The PA/PHMG coating could be completed within 4 h under mild conditions. The prepared PA/PHMG coatings on PP mesh surfaces exhibited desirable biocompatibility toward mammalian cells and excellent antibacterial properties against the notorious "superbug" methicillin-resistant Staphylococcus aureus (MRSA) and tetracycline-resistant Escherichia coli (TRE). The PA/PHMG-coated PP meshes showed killing ratios of over 99% against MRSA in an infected abdominal wall hernia repair model. Furthermore, histological and immunohistochemical analysis revealed a significantly attenuated degree of neutrophil infiltration in the PA/PHMG coating group, attributed to the decreased bacterial numbers alleviating the inflammatory response at the implant sites. Meanwhile, the pristine PP and PA/PHMG-coated meshes showed effective tissue repair, with the PA/PHMG coating group exhibiting enhanced angiogenesis compared with pristine PP meshes, suggesting superior tissue restoration. Additionally, PP meshes with the highest PHMG weight ratio (PA/PHMG(3)) exhibited excellent long-term robustness under phosphate-buffered saline (PBS) immersion with a killing ratio against MRSA still exceeding 95% after 60 days of PBS immersion. The present work provides a facile and promising approach for developing antibacterial implants.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Polypropylenes / Surgical Mesh / Methicillin-Resistant Staphylococcus aureus / Anti-Bacterial Agents Limits: Animals / Humans Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2024 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Polypropylenes / Surgical Mesh / Methicillin-Resistant Staphylococcus aureus / Anti-Bacterial Agents Limits: Animals / Humans Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2024 Document type: Article Affiliation country: