Your browser doesn't support javascript.
loading
Genetic effects and causal association analyses of 14 common conditions/diseases in multimorbidity patterns.
Fu, Ting; Yang, Yi-Qun; Tang, Chang-Hua; He, Pei; Lei, Shu-Feng.
Affiliation
  • Fu T; Collaborative Innovation Center for Bone and Immunology between Sihong Hospital and Soochow University, Center for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu P. R. China.
  • Yang YQ; Department of Orthopedics, Sihong Hospital, Suzhou, Jiangsu, P. R. China.
  • Tang CH; Collaborative Innovation Center for Bone and Immunology between Sihong Hospital and Soochow University, Center for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu P. R. China.
  • He P; Department of Orthopedics, Sihong Hospital, Suzhou, Jiangsu, P. R. China.
  • Lei SF; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, P. R. China.
PLoS One ; 19(5): e0300740, 2024.
Article in En | MEDLINE | ID: mdl-38753827
ABSTRACT

BACKGROUND:

Multimorbidity has become an important health challenge in the aging population. Accumulated evidence has shown that multimorbidity has complex association patterns, but the further mechanisms underlying the association patterns are largely unknown.

METHODS:

Summary statistics of 14 conditions/diseases were available from the genome-wide association study (GWAS). Linkage disequilibrium score regression analysis (LDSC) was applied to estimate the genetic correlations. Pleiotropic SNPs between two genetically correlated traits were detected using pleiotropic analysis under the composite null hypothesis (PLACO). PLACO-identified SNPs were mapped to genes by Functional Mapping and Annotation of Genome-Wide Association Studies (FUMA), and gene set enrichment analysis and tissue differential expression were performed for the pleiotropic genes. Two-sample Mendelian randomization analyses assessed the bidirectional causality between conditions/diseases.

RESULTS:

LDSC analyses revealed the genetic correlations for 20 pairs based on different two-disease combinations of 14 conditions/diseases, and genetic correlations for 10 pairs were significant after Bonferroni adjustment (P<0.05/91 = 5.49E-04). Significant pleiotropic SNPs were detected for 11 pairs of correlated conditions/diseases. The corresponding pleiotropic genes were differentially expressed in the brain, nerves, heart, and blood vessels and enriched in gluconeogenesis and drug metabolism, biotransformation, and neurons. Comprehensive causal analyses showed strong causality between hypertension, stroke, and high cholesterol, which drive the development of multiple diseases.

CONCLUSIONS:

This study highlighted the complex mechanisms underlying the association patterns that include the shared genetic components and causal effects among the 14 conditions/diseases. These findings have important implications for guiding the early diagnosis, management, and treatment of comorbidities.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Linkage Disequilibrium / Polymorphism, Single Nucleotide / Genome-Wide Association Study / Mendelian Randomization Analysis / Multimorbidity Limits: Humans Language: En Journal: PLoS One Journal subject: CIENCIA / MEDICINA Year: 2024 Document type: Article Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Linkage Disequilibrium / Polymorphism, Single Nucleotide / Genome-Wide Association Study / Mendelian Randomization Analysis / Multimorbidity Limits: Humans Language: En Journal: PLoS One Journal subject: CIENCIA / MEDICINA Year: 2024 Document type: Article Country of publication: