Your browser doesn't support javascript.
loading
Long-term wastewater monitoring of SARS-CoV-2 viral loads and variants at the major international passenger hub Amsterdam Schiphol Airport: A valuable addition to COVID-19 surveillance.
van der Drift, Anne-Merel R; Haver, Auke; Kloosterman, Astrid; van der Beek, Rudolf F H J; Nagelkerke, Erwin; Eggink, Dirk; Laros, Jeroen F J; Nrs, Consortium; van Dissel, Jaap T; de Roda Husman, Ana Maria; Lodder, Willemijn J.
Affiliation
  • van der Drift AR; Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands; Institute for Risk Assessment Science (IRAS), Utrecht University (UU), Yalelaan 2, 3584 CM Utrecht, the Netherlands.
  • Haver A; Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands.
  • Kloosterman A; Centre for Environmental Safety and Security (M&V), National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721, MA, Bilthoven, the Netherlands.
  • van der Beek RFHJ; Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands.
  • Nagelkerke E; Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands.
  • Eggink D; Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands; Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of
  • Laros JFJ; Department of Human Genetics (HG), Leiden University Medical Center (LUMC); Einthovenweg 20, 2333 ZC Leiden, the Netherlands; Department of BioInformatics and computational services (BIR), National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721, MA, Bilth
  • Nrs C; Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands.
  • van Dissel JT; Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands; Department of Infectious Diseases, Leiden University Medical Center (LUMC); Albinusdreef 2, 2333, ZA, Leiden, the Netherlan
  • de Roda Husman AM; Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands; Institute for Risk Assessment Science (IRAS), Utrecht University (UU), Yalelaan 2, 3584 CM Utrecht, the Netherlands.
  • Lodder WJ; Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands. Electronic address: willemijn.lodder@rivm.nl.
Sci Total Environ ; 937: 173535, 2024 Aug 10.
Article in En | MEDLINE | ID: mdl-38802021
ABSTRACT
Wastewater-based epidemiological surveillance at municipal wastewater treatment plants has proven to play an important role in COVID-19 surveillance. Considering international passenger hubs contribute extensively to global transmission of viruses, wastewater surveillance at this type of location may be of added value as well. The aim of this study is to explore the potential of long-term wastewater surveillance at a large passenger hub as an additional tool for public health surveillance during different stages of a pandemic. Here, we present an analysis of SARS-CoV-2 viral loads in airport wastewater by reverse-transcription quantitative polymerase chain reaction (RT-qPCR) from the beginning of the COVID-19 pandemic in Feb 2020, and an analysis of SARS-CoV-2 variants by whole-genome next-generation sequencing from Sep 2020, both until Sep 2022, in the Netherlands. Results are contextualized using (inter)national measures and data sources such as passenger numbers, clinical surveillance data and national wastewater surveillance data. Our findings show that wastewater surveillance was possible throughout the study period, irrespective of measures, as viral loads were detected and quantified in 98.6 % (273/277) of samples. Emergence of SARS-CoV-2 variants, identified in 91.0 % (161/177) of sequenced samples, coincided with increases in viral loads. Furthermore, trends in viral load and variant detection in airport wastewater closely followed, and in some cases preceded, trends in national daily average viral load in wastewater and variants detected in clinical surveillance. Wastewater-based epidemiology at a large international airport is a valuable addition to classical COVID-19 surveillance and the developed expertise can be applied in pandemic preparedness plans for other (emerging) pathogens in the future.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Viral Load / Airports / Wastewater / SARS-CoV-2 / COVID-19 Limits: Humans Country/Region as subject: Europa Language: En Journal: Sci Total Environ Year: 2024 Document type: Article Affiliation country: Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Viral Load / Airports / Wastewater / SARS-CoV-2 / COVID-19 Limits: Humans Country/Region as subject: Europa Language: En Journal: Sci Total Environ Year: 2024 Document type: Article Affiliation country: Country of publication: