Your browser doesn't support javascript.
loading
Assessment of metals and metalloids agglutinated to airborne suspended particulate matter in selected plant species during the pre-and post-monsoon in the urban area.
Tripathi, Durga Prasad; Nema, Arvind Kumar.
Affiliation
  • Tripathi DP; Department of Civil Engineering, Indian Institute of Technology Delhi, Delhi, India, 110016.
  • Nema AK; Department of Civil Engineering, Indian Institute of Technology Delhi, Delhi, India, 110016. Electronic address: aknema@iitd.ac.in.
Environ Pollut ; 356: 124300, 2024 Jun 05.
Article in En | MEDLINE | ID: mdl-38848956
ABSTRACT
The elemental accumulation has emerged as a major environmental concern due to various anthropogenic sources such as vehicles, road dust, and industrial activities, contributing to the agglutination of elements to airborne Suspended Particulate Matter (SPM). SPM-bound elements accumulate on plant surfaces impact air quality and human health due to their noxiousness. Therefore, plants' ability to capture and mitigate air pollutants plays a crucial role in urban areas. This study aimed to investigate the levels and distribution of twenty-six elements, comprised of heavy metals (Cd, Pb, Cr, Cu Zn, Co, Ni, Fe, Mn, Ag, Mo, V, Ga, and Bi), light metals (B, As, Te, and Se), and metalloids (Al, Li, Sr, K, Mg, Na, Ca, and Ba) accumulated on the surface and inside the leaves of dominant plant species during the pre-and post-monsoon at six categorized (commercial, traffic-prone, residential, educational, greenbelt and industrial areas) locations in Delhi, India. In addition, the Metal Accumulation Index (MAI) was determined, and the statistical analysis was conducted using two-way ANOVA, Principal Component Analysis (PCA), and Hierarchical Cluster Analysis (HCA). In the pre-and post-monsoon, two-way ANOVA revealed significant differences (P < 0.05) in metal concentrations. During the pre-monsoon plants exhibited the highest metal accumulation (∼21%) at the Anand Vihar (commercial) in Delhi, with the maximum average concentrations of Cr (118.25 mg/kg), Cu (204.38 mg/kg), Zn (293.27 mg/kg), and Fe (2721.17 mg/kg). Ficus benghalensis L exhibited the maximum 213.73 MAI at the Anand Vihar in the pre-monsoon. Ni and Cr indicated the highest correlation (P < 0.05, r = 0.82) in the PCA test. HCA test revealed similarity (∼87.7%) at ITO (traffic-prone) and Okhla Phase-2 (industrial) in F. religiosa regarding metal concentration patterns. Findings highlighted seasonal elemental pollutants uptake dynamics of plant species and explored species-specific metal accumulation, revealing potential implications of metal-tolerant plants for urban greenbelt.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Environ Pollut Journal subject: SAUDE AMBIENTAL Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Environ Pollut Journal subject: SAUDE AMBIENTAL Year: 2024 Document type: Article