Your browser doesn't support javascript.
loading
Fungal composition associated with host tree identity mediates nutrient addition effects on wood microbial respiration.
Hu, Zhenhong; Fernández-Martínez, Marcos; He, Qinsi; Xu, Zhiyuan; Jiang, Lin; Zhou, Guiyao; Chen, Ji; Nie, Ming; Yu, Qiang; Feng, Hao; Huang, Zhiqun; Michaletz, Sean T.
Affiliation
  • Hu Z; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, Shaanxi, China.
  • Fernández-Martínez M; Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, China.
  • He Q; CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain.
  • Xu Z; CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain.
  • Jiang L; BEECA-UB, Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Catalonia, Spain.
  • Zhou G; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, Shaanxi, China.
  • Chen J; School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.
  • Nie M; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, Shaanxi, China.
  • Yu Q; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs of China, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China.
  • Feng H; School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.
  • Huang Z; Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain.
  • Michaletz ST; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China.
Ecology ; 105(8): e4375, 2024 Aug.
Article in En | MEDLINE | ID: mdl-38924062
ABSTRACT
Fungi are key decomposers of deadwood, but the impact of anthropogenic changes in nutrients and temperature on fungal community and its consequences for wood microbial respiration are not well understood. Here, we examined how nitrogen and phosphorus additions (field experiment) and warming (laboratory experiment) together influence fungal composition and microbial respiration from decomposing wood of angiosperms and gymnosperms in a subtropical forest. Nutrient additions significantly increased wood microbial respiration via fungal composition, but effects varied with nutrient types and taxonomic groups. Specifically, phosphorus addition significantly increased wood microbial respiration (65%) through decreased acid phosphatase activity and increased abundance of fast-decaying fungi (e.g., white rot), while nitrogen addition marginally increased it (30%). Phosphorus addition caused a greater increase in microbial respiration in gymnosperms than in angiosperms (83.3% vs. 46.9%), which was associated with an increase in BasidiomycotaAscomycota operational taxonomic unit abundance in gymnosperms but a decrease in angiosperms. The temperature dependencies of microbial respiration were remarkably constant across nutrient levels, consistent with metabolic scaling theory hypotheses. This is because there was no significant interaction between temperature and wood phosphorus availability or fungal composition, or the interaction among the three factors. Our results highlight the key role of tree identity in regulating nutrient response of wood microbial respiration through controlling fungal composition. Given that the range of angiosperm species may expand under climate warming and forest management, our data suggest that expansion will decrease nutrient effects on forest carbon cycling in forests previously dominated by gymnosperm species.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Trees / Wood / Fungi Language: En Journal: Ecology Year: 2024 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Trees / Wood / Fungi Language: En Journal: Ecology Year: 2024 Document type: Article Affiliation country: