Your browser doesn't support javascript.
loading
Construction of a highly specific fluorescence "turn-on" probe for H2S detection and imaging in drug-induced live cells, zebrafish and mice arthritis models.
Huang, Jianji; Zou, Xinrong; Liu, Xinge; Ran, Hongyan; Pang, Meiling; Zhao, Lulu; Wang, Ping; Chen, Jin; Chen, Meizi; Peng, Yongbo.
Affiliation
  • Huang J; The International Medical College of Chongqing Medical University, Chongqing 400016, China.
  • Zou X; The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
  • Liu X; The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
  • Ran H; The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
  • Pang M; The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
  • Zhao L; The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
  • Wang P; Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China.
  • Chen J; Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China.
  • Chen M; Department of Respiratory Medicine, The First People's Hospital of Chenzhou, Chenzhou 423000, China.
  • Peng Y; The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China. Electronic address: pengyongbo2021@cqmu.edu.cn.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124928, 2024 Dec 15.
Article in En | MEDLINE | ID: mdl-39102780
ABSTRACT
Quantitatively and selectively detecting the biomarker of hydrogen sulfide (H2S) in arthritis diseases is of great significance for the early diagnosis and treatment of arthritis. Modern medical studies show that H2S as a biomarker is involved in the development of inflammation. In this work, a new highly specific fluorescence "turn-on" probe JMD-H2S was tailored for H2S detection and imaging in drug-induced live cells, zebrafish and mice arthritis models, which utilized pyrazoline molecule as the fluorescence signal reporter group and 2,4-dinitrophenyl ether group (DNB) with strong intramolecular charge transfer (ICT) effect as the H2S recognition moiety and fluorescence quenching group. JMD-H2S showed a fast response time (<60 s), a large fluorescence response ratio (enhanced ∼20 folds) at I453/I0, excellent sensitivity toward H2S over other analytes, and an outstanding limit of detection (LOD) as low as 25.3 nM. In addition, JMD-H2S has been successfully applied for detecting and imaging H2S in drug-induced live cells, zebrafish, and mice arthritis models with satisfactory results, suggesting it can be used as a robust molecular tool for investigating the occurrence and development of H2S and arthritis.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Arthritis / Zebrafish / Fluorescent Dyes / Hydrogen Sulfide Limits: Animals / Humans Language: En Journal: Spectrochim Acta A Mol Biomol Spectrosc Journal subject: BIOLOGIA MOLECULAR Year: 2024 Document type: Article Affiliation country: Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Arthritis / Zebrafish / Fluorescent Dyes / Hydrogen Sulfide Limits: Animals / Humans Language: En Journal: Spectrochim Acta A Mol Biomol Spectrosc Journal subject: BIOLOGIA MOLECULAR Year: 2024 Document type: Article Affiliation country: Country of publication: