Your browser doesn't support javascript.
loading
DNA microarray analysis of differential gene expression of 6-year-old rat neural striatal progenitor cells during early differentiation.
Zhou, F C; Duguid, J R; Edenberg, H J; McClintick, J; Young, P; Nelson, P.
Affiliation
  • Zhou FC; Departments of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA. imce100@iupui.edu
Restor Neurol Neurosci ; 18(2-3): 95-104, 2001.
Article in En | MEDLINE | ID: mdl-11847432
ABSTRACT
EGF-responsive striatal progenitor cells from rat brain have been maintained in culture in the form of neurospheres for six years without exhausting their renewal capacity. The events surrounding differentiation of stem cells in the brain after a long progenitorship remain a mystery. Using DNA microarray analysis we investigated differential gene expression, comparing progenitor cells in their neurosphere state with the cells 24 hours after induction of differentiation. Eighty-one genes showed increased expression in the differentiated condition. Genes associated with cellular growth, neurite outgrowth, and synaptogenesis were activated, including both anti-apoptotic and pro-apoptotic genes. Two transmitter- related genes, acetylcholine receptor-beta and glutamate receptor-beta-unit were also elevated-, these genes not only fit the profile of early neural development, but also reflect the characteristics of striatal neurons. In addition, there are approximately 30 expressed sequence tags (ES7) increased during neural differentiation. Forty-seven genes showed decreased expression; half of them are known genes related to the cell cycle, cell adhesion, transcription, and signaling. Tbe signaling and cell cycle genes may be responsible for the life-long self-renewal. These data demonstrate for the first time that life-long quiescent stem cells retain the potential to become activated and develop into specific types of brain cells. The six-year long-term neural stem cells are an excellent model for studying developmental neurobiological processes and aging.
Subject(s)
Search on Google
Collection: 01-internacional Database: MEDLINE Main subject: Stem Cells / Neurons Type of study: Prognostic_studies Limits: Animals Language: En Journal: Restor Neurol Neurosci Journal subject: NEUROLOGIA Year: 2001 Document type: Article Affiliation country: Estados Unidos
Search on Google
Collection: 01-internacional Database: MEDLINE Main subject: Stem Cells / Neurons Type of study: Prognostic_studies Limits: Animals Language: En Journal: Restor Neurol Neurosci Journal subject: NEUROLOGIA Year: 2001 Document type: Article Affiliation country: Estados Unidos
...