Your browser doesn't support javascript.
loading
A simple and cost-effective method for the isolation of islets from nonhuman primates.
O'Neil, John J; Tchipashvili, Vaja; Parent, Richard J; Ugochukwu, Obinna; Chandra, Gaurav; Koulmanda, Maria; Ko, Dicken; Kawai, Tatsuo.
Affiliation
  • O'Neil JJ; Joslin Diabetes Center, Boston, MA, USA. jjoneil@cpcus.jnj.com
Cell Transplant ; 12(8): 883-90, 2003.
Article in En | MEDLINE | ID: mdl-14763508
ABSTRACT
Recent advances in islet cell transplantation have led to insulin independence in a majority of islet transplant recipients. However, there exists a need to overcome the shortage of donor tissue and the necessity for life-long immunosuppression. Preclinical studies in large animal models are necessary to evaluate the safety and efficacy of alternative approaches for clinical islet transplantation. The nonhuman primate serves as an appropriate animal model for such investigations; however, a major impediment in performing such preclinical research has been the difficulty in isolating islets of sufficient quantity and quality. The current study describes a simple and cost-effective method to isolate nonhuman primate islets to support preclinical islet transplantation research. The results of islet isolations from 54 cynomolgus monkeys and 4 baboons are reported. The pancreas was infused with Liberase HI and subjected to static digestion. The digested tissue was shaken, filtered through a mesh screen, applied to a discontinuous gradient, and centrifuged in much the same manner as with conventional rodent islet isolations. Islets were collected from the two interfaces, washed, and transplanted. Following purification, cynomolgus monkey islet isolation yields were 50,100 +/- 3120 IE total or 8760 +/- 420 IE/g pancreas with the percent purity and viability of 90.8 +/- 0.9 and 90.7 +/- 0.7, respectively. Total insulin content of the isolated islets was 405 +/- 53 microg insulin with DNA content being and 976 +/- 117 microg DNA, corresponding to a ratio of 0.57 microg insulin/microg DNA. STZ-induced diabetes was reversed in both mouse and nonhuman primate recipients, which possessed significant levels of c-peptide following transplantation and well-granulated islet grafts. The technique yields sufficient numbers of pure and viable islets to support preclinical research to develop improved strategies to prevent the immune destruction of the transplanted islet graft.
Subject(s)
Search on Google
Collection: 01-internacional Database: MEDLINE Main subject: Cell Separation / Islets of Langerhans Transplantation / Islets of Langerhans Type of study: Health_economic_evaluation Limits: Animals / Humans / Male Language: En Journal: Cell Transplant Journal subject: TRANSPLANTE Year: 2003 Document type: Article Affiliation country: Estados Unidos
Search on Google
Collection: 01-internacional Database: MEDLINE Main subject: Cell Separation / Islets of Langerhans Transplantation / Islets of Langerhans Type of study: Health_economic_evaluation Limits: Animals / Humans / Male Language: En Journal: Cell Transplant Journal subject: TRANSPLANTE Year: 2003 Document type: Article Affiliation country: Estados Unidos
...