Your browser doesn't support javascript.
loading
Effects of ATP and GTP on voltage-gated K+ currents in glandular and muscular sympathetic neurons.
Szulczyk, Bartlomiej; Rola, Rafal; Witkowski, Grzegorz; Szulczyk, Pawel.
Affiliation
  • Szulczyk B; The Faculty of Medicine, Department of Experimental and Clinical Physiology, The Medical University of Warsaw, Krakowskie Przedmiescie 26/28, Warsaw 00-927, Poland. szulczyk@amwaw.edu.pl
Brain Res ; 1068(1): 82-93, 2006 Jan 12.
Article in En | MEDLINE | ID: mdl-16359644
ABSTRACT
This study assesses the effects of ATP and GTP on the kinetic properties of voltage-gated K+ currents in anatomically identified postganglionic sympathetic neurons innervating the submandibular gland and the masseter muscle in rats. Three types of K+ currents were isolated the I(Af) steady-state inactivating at more hyperpolarized potentials, I(As) steady-state inactivating at less hyperpolarized potentials than I(Af) and the I(K) current independent of membrane potential. The kinetic properties of these currents were tested in neurons with ATP (4 mM) and GTP (0.5 mM) or without ATP and GTP in the intracellular solution. In glandular and muscular neurons in the absence of ATP and GTP in the intracellular solution, the current density of I(Af) was significantly larger (142 pA/pF and 166 pA/pF, respectively) comparing to cells with ATP and GTP (96 pA/pF and 100 pA/pF, respectively). The I(As) was larger only in glandular neurons (52 pA/pF vs. 37 pA/pF).Conversely, I(K) current density was smaller in glandular and muscular neurons without ATP and GTP (17 pA/pF and 31 pA/pF, respectively) comparing to cells with ATP and GTP (57 pA/pF and 58 pA/pF, respectively). In glandular (15.5 nA/ms vs. 6.9 nA/ms) and muscular (10.9 nA/ms vs. 7.5 nA/ms) neurons, the I(Af) activated faster in the absence of ATP and GTP. Half inactivation voltage of I(Af) in glandular (-110.0 mV vs. -119.7 mV) and muscular (-108.4 vs. -117.3 mV) neurons was shifted towards depolarization in the absence of ATP and GTP. We suggest that the kinetic properties of K+ currents in glandular and muscular sympathetic neurons change markedly in the absence of ATP and GTP in the cytoplasm. Effectiveness of steady-state inactivated currents (I(Af) and I(AS)) increased, while effectiveness of steady-state noninactivated currents decreased in the absence of ATP and GTP. The effects were more pronounced in glandular than in muscular neurons.
Subject(s)
Search on Google
Collection: 01-internacional Database: MEDLINE Main subject: Submandibular Gland / Sympathetic Nervous System / Potassium Channels / Ion Channel Gating / Adenosine Triphosphate / Muscle, Skeletal / Guanosine Triphosphate / Neurons Limits: Animals Language: En Journal: Brain Res Year: 2006 Document type: Article Affiliation country: Polonia
Search on Google
Collection: 01-internacional Database: MEDLINE Main subject: Submandibular Gland / Sympathetic Nervous System / Potassium Channels / Ion Channel Gating / Adenosine Triphosphate / Muscle, Skeletal / Guanosine Triphosphate / Neurons Limits: Animals Language: En Journal: Brain Res Year: 2006 Document type: Article Affiliation country: Polonia