Strain differences in hepatic cytochrome P450 1A and 3A expression between Sprague-Dawley and Wistar rats.
J Toxicol Sci
; 33(4): 447-57, 2008 Oct.
Article
in En
| MEDLINE
| ID: mdl-18827444
Expression of hepatic cytochrome P450 (CYP) isoforms was compared in Sprague-Dawley (SD) and Wistar (WI) rats, which are commonly used strains in preclinical studies. Basal CYP1A1, CYP1A2, and CYP3A2 mRNA levels were higher in WI rats than in SD rats (by 8-, 3- and 2-fold, respectively). Treatment with phenobarbital, a potent CYP inducer, increased the predominance of expression of these three mRNAs in WI rats (by 26-, 4-, and 2-fold, respectively) along with the predominance of increased microsomal total P450 contents and smooth-surface endoplasmic reticulum in the centrilobular hepatocytes. CYP1A enzymatic activity was also higher in WI rats than in SD rats. No strain differences were observed in phenobarbital induction of CYP2B1/2, CYP2C6, or CYP3A1. CYP3A2 mRNA was more strongly induced by dexamethasone, a typical inducer of CYP3A, together with CYP3A1 mRNA, in WI rats than in SD rats (by 2-fold), whereas the CYP1A1 and CYP1A2 mRNA expression induced by beta-naphtoflavone, a typical inducer of CYP1A, did not differ between the two strains. Furthermore, WI rats exhibited predominantly arylhydrocarbon receptor, pregnane X receptor, and constitutive androstane receptor mRNAs, responsible for CYP1A or CYP3A induction, with phenobarbital or dexamethasone induction. In conclusion, significant, predominant expression of hepatic CYP1A and CYP3A mRNAs in WI rats was observed, possibly related to nuclear receptor-mediated induction. Considering the pharmacokinetic and toxicological importance of CYP1A and CYP3A, different outcomes might arise depending on the rat strains used in preclinical studies of drugs metabolized typically or mainly by both isoforms.
Search on Google
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Aryl Hydrocarbon Hydroxylases
/
Cytochrome P-450 CYP1A1
/
Cytochrome P-450 CYP1A2
/
Liver
/
Membrane Proteins
Limits:
Animals
Language:
En
Journal:
J Toxicol Sci
Year:
2008
Document type:
Article
Affiliation country:
Japón
Country of publication:
Japón