Your browser doesn't support javascript.
loading
Animal model for endoscopic neurosurgical training: technical note.
Fernandez-Miranda, J C; Barges-Coll, J; Prevedello, D M; Engh, J; Snyderman, C; Carrau, R; Gardner, P A; Kassam, A B.
Affiliation
  • Fernandez-Miranda JC; Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. fernandezmirandajc@upmc.edu
Minim Invasive Neurosurg ; 53(5-6): 286-9, 2010 Oct.
Article in En | MEDLINE | ID: mdl-21302201
ABSTRACT

OBJECTIVE:

The learning curve for endonasal endoscopic and neuroendoscopic port surgery is long and often associated with an increase in complication rates as surgeons gain experience. We present an animal model for laboratory training aiming to encourage the young generation of neurosurgeons to pursue proficiency in endoscopic neurosurgical techniques.

METHODS:

20 Wistar rats were used as models. The animals were introduced into a physical trainer with multiple ports to carry out fully endoscopic microsurgical procedures. The vertical and horizontal dimensions of the paired ports (simulated nostrils) were 35×20 mm, 35×15 mm, 25×15 mm, and 25×10 mm. 2 additional single 11.5 mm endoscopic ports were added. Surgical depth varied as desired between 8 and 15 cm. The cervical and abdominal regions were the focus of the endoscopic microsurgical exercises.

RESULTS:

The different endoscopic neurosurgical techniques were effectively trained at the millimetric dimension. Levels of progressive surgical difficulty depending upon the endoneurosurgical skills set needed for a particular surgical exercise were distinguished. LEVEL 1 is soft-tissue microdissection (exposure of cervical muscular plane and retroperitoneal space); LEVEL 2 is soft-tissue-vascular and vascular-capsule microdissection (aorto-cava exposure, carotid sheath opening, external jugular vein isolation); LEVEL 3 is artery-nerve microdissection (carotid-vagal separation); LEVEL 4 is artery-vein microdissection (aorto-cava separation); LEVEL 5 is vascular repair and microsuturing (aortic rupture), which verified the lack of current proper instrumentation.

CONCLUSION:

The animal training model presented here has the potential to shorten the length of the learning curve in endonasal endoscopic and neuroendoscopic port surgery and reduce the incidence of training-related surgical complications.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Neuroendoscopy Limits: Animals Language: En Journal: Minim Invasive Neurosurg Journal subject: NEUROCIRURGIA Year: 2010 Document type: Article Affiliation country: Estados Unidos

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Neuroendoscopy Limits: Animals Language: En Journal: Minim Invasive Neurosurg Journal subject: NEUROCIRURGIA Year: 2010 Document type: Article Affiliation country: Estados Unidos