Your browser doesn't support javascript.
loading
5-HT(3A) receptor-bearing white matter interstitial GABAergic interneurons are functionally integrated into cortical and subcortical networks.
von Engelhardt, Jakob; Khrulev, Sergey; Eliava, Marina; Wahlster, Sarah; Monyer, Hannah.
Affiliation
  • von Engelhardt J; Department of Clinical Neurobiology, University Hospital Heidelberg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
J Neurosci ; 31(46): 16844-54, 2011 Nov 16.
Article in En | MEDLINE | ID: mdl-22090510
In addition to axons and surrounding glial cells, the corpus callosum also contains interstitial neurons that constitute a heterogeneous cell population. There is growing anatomical evidence that white matter interstitial cells (WMICs) comprise GABAergic interneurons, but so far there is little functional evidence regarding their connectivity. The scarcity of these cells has hampered electrophysiological studies. We overcame this hindrance by taking recourse to transgenic mice in which distinct WMICs expressed enhanced green fluorescence protein (EGFP). The neuronal phenotype of the EGFP-labeled WMICs was confirmed by their NeuN positivity. The GABAergic phenotype could be established based on vasoactive intestinal peptide and calretinin expression and was further supported by a firing pattern typical for interneurons. Axons and dendrites of many EGFP-labeled WMICs extended to the cortex, hippocampus, and striatum. Patch-clamp recordings in acute slices showed that they receive excitatory and inhibitory input from cortical and subcortical structures. Moreover, paired recordings revealed that EGFP-labeled WMICs inhibit principal cells of the adjacent cortex, thus providing unequivocal functional evidence for their GABAergic phenotype and demonstrating that they are functionally integrated into neuronal networks.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Axons / Cerebral Cortex / Corpus Callosum / Receptors, Serotonin, 5-HT3 / Gamma-Aminobutyric Acid / Interneurons Limits: Animals Language: En Journal: J Neurosci Year: 2011 Document type: Article Affiliation country: Alemania Country of publication: Estados Unidos

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Axons / Cerebral Cortex / Corpus Callosum / Receptors, Serotonin, 5-HT3 / Gamma-Aminobutyric Acid / Interneurons Limits: Animals Language: En Journal: J Neurosci Year: 2011 Document type: Article Affiliation country: Alemania Country of publication: Estados Unidos