Your browser doesn't support javascript.
loading
Studying MHC class II peptide loading and editing in vitro.
Kim, AeRyon; Ishizuka, Isabel; Hartman, Isamu; Poluektov, Yuri; Narayan, Kedar; Sadegh-Nasseri, Scheherazade.
Affiliation
  • Kim A; Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
  • Ishizuka I; Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
  • Hartman I; Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
  • Poluektov Y; Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
  • Narayan K; Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
  • Sadegh-Nasseri S; Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA. ssadegh@jhmi.edu.
Methods Mol Biol ; 960: 447-459, 2013.
Article in En | MEDLINE | ID: mdl-23329506
ABSTRACT
HLA-DM is now known to have a major contribution to the selection of immunodominant epitopes. A better understanding of the mechanisms controlling epitope selection can be achieved by examination of the biophysical behavior of major histocompatibility complex (MHC) class II molecules upon binding of antigenic peptides and the effect of DM on the interactions. Using purified soluble molecules, in this chapter, we describe several in vitro methods for measuring peptide binding to HLA-DR molecules and the effects of HLA-DM on the interactions. A simple qualitative method, Gentle SDS-PAGE Assay, would assess the ability of peptides to form tight complexes with MHC class II molecules. Measuring binding kinetics is among the most informative approaches to understanding molecular mechanisms, and here we describe two different methods for measuring binding kinetics of peptide-MHC complexes. In one method, rates of association and dissociation of fluorescently labeled peptides to soluble MHC class II molecules can be determined using G50 spin columns to separate unbound peptides from those in complex with MHC molecules. In another method, association and dissociation of unlabeled peptides and MHC class II molecules can be determined in real time using BIAcore surface plasmon resonance (SPR). We also have described an Intrinsic Tryptophan Fluorescence Assay for studying transient interactions of DM and MHC class II molecules.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Peptide Fragments / HLA-D Antigens / Surface Plasmon Resonance / HLA-DRB1 Chains Type of study: Qualitative_research Language: En Journal: Methods Mol Biol Journal subject: BIOLOGIA MOLECULAR Year: 2013 Document type: Article Affiliation country: Estados Unidos

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Peptide Fragments / HLA-D Antigens / Surface Plasmon Resonance / HLA-DRB1 Chains Type of study: Qualitative_research Language: En Journal: Methods Mol Biol Journal subject: BIOLOGIA MOLECULAR Year: 2013 Document type: Article Affiliation country: Estados Unidos