Your browser doesn't support javascript.
loading
The ginsenoside Rg1 prevents transverse aortic constriction-induced left ventricular hypertrophy and cardiac dysfunction by inhibiting fibrosis and enhancing angiogenesis.
Zhang, Yao-Jun; Zhang, Xin-Lei; Li, Ming-Hui; Iqbal, Javaid; Bourantas, Christos V; Li, Jing-Jing; Su, Xing-Yu; Muramatsu, Takashi; Tian, Nai-Liang; Chen, Shao-Liang.
Affiliation
  • Zhang YJ; *Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
J Cardiovasc Pharmacol ; 62(1): 50-7, 2013 Jul.
Article in En | MEDLINE | ID: mdl-23846802
ABSTRACT

BACKGROUND:

Ginsenoside Rg1, an important and active ingredient of Panax ginseng, has been shown to exert cardioprotective effects in vivo. The present study aimed to test the hypothesis that ginsenoside Rg1 attenuates cardiac dysfunction in a transverse aortic constriction (TAC)-induced left ventricular hypertrophy in vivo via proangiogenic and antifibrotic effects.

METHODS:

This study investigated the effects of ginsenoside Rg1 in a rat model of TAC-induced left ventricular hypertrophy. Cardiac function was assessed by echocardiography. The antifibrotic and proangiogenic effects were assessed by histopathology and mRNA expression of procollagen I, III, and vascular endothelial growth factor (VEGF) through quantitative real-time PCR. The expression of phosphorylation of Akt, p38 mitogen-activated protein kinase (MAPK), hypoxia inducible factor-1 (HIF-1), and VEGF proteins were examined by Western blotting.

RESULTS:

Ginsenoside Rg1 treatment significantly decreased TAC-induced myocardial fibrosis and left ventricular hypertrophy, and preserved cardiac function. Ginsenoside Rg1 administration enhanced angiogenesis by increasing the expression of HIF-1 and VEGF. These cardioprotective effects of ginsenoside Rg1 are partially related to the activation of phospho-Akt and inhibition of p38 MAPK.

CONCLUSIONS:

Ginsenoside Rg1 exhibited protective effect against TAC-induced left ventricular hypertrophy and cardiac dysfunction, which is potentially associated with phospho-Akt activation and p38 MAPK inhibition.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Hypertrophy, Left Ventricular / Ventricular Dysfunction, Left / Neovascularization, Physiologic / Constriction, Pathologic / Ginsenosides / Angiogenesis Inducing Agents Type of study: Diagnostic_studies / Prognostic_studies Limits: Animals Language: En Journal: J Cardiovasc Pharmacol Year: 2013 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Hypertrophy, Left Ventricular / Ventricular Dysfunction, Left / Neovascularization, Physiologic / Constriction, Pathologic / Ginsenosides / Angiogenesis Inducing Agents Type of study: Diagnostic_studies / Prognostic_studies Limits: Animals Language: En Journal: J Cardiovasc Pharmacol Year: 2013 Document type: Article Affiliation country: China