Your browser doesn't support javascript.
loading
Time series modeling and forecasting using memetic algorithms for regime-switching models.
IEEE Trans Neural Netw Learn Syst ; 23(11): 1841-7, 2012 Nov.
Article in En | MEDLINE | ID: mdl-24808077
In this brief, we present a novel model fitting procedure for the neuro-coefficient smooth transition autoregressive model (NCSTAR), as presented by Medeiros and Veiga. The model is endowed with a statistically founded iterative building procedure and can be interpreted in terms of fuzzy rule-based systems. The interpretability of the generated models and a mathematically sound building procedure are two very important properties of forecasting models. The model fitting procedure employed by the original NCSTAR is a combination of initial parameter estimation by a grid search procedure with a traditional local search algorithm. We propose a different fitting procedure, using a memetic algorithm, in order to obtain more accurate models. An empirical evaluation of the method is performed, applying it to various real-world time series originating from three forecasting competitions. The results indicate that we can significantly enhance the accuracy of the models, making them competitive to models commonly used in the field.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: IEEE Trans Neural Netw Learn Syst Year: 2012 Document type: Article Country of publication: Estados Unidos

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: IEEE Trans Neural Netw Learn Syst Year: 2012 Document type: Article Country of publication: Estados Unidos