Your browser doesn't support javascript.
loading
Aqueous solution synthesis of Pt-M (M = Fe, Co, Ni) bimetallic nanoparticles and their catalysis for the hydrolytic dehydrogenation of ammonia borane.
Wang, Shuai; Zhang, Duo; Ma, Yanyun; Zhang, Hui; Gao, Jing; Nie, Yuting; Sun, Xuhui.
Affiliation
  • Wang S; Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou, Jiangsu 215123, People's Republic of China.
ACS Appl Mater Interfaces ; 6(15): 12429-35, 2014 Aug 13.
Article in En | MEDLINE | ID: mdl-25058566
ABSTRACT
Platinum-based bimetallic nanocatalysts have attracted much attention due to their high-efficiency catalytic performance in energy-related applications such as fuel cell and hydrogen storage, for example, the hydrolytic dehydrogenation of ammonia borane (AB). In this work, a simple and green method has been demonstrated to successfully prepare Pt-M (M = Fe, Co, Ni) NPs with tunable composition (nominal Pt/M atomic ratios of 41, 11, and 14) in aqueous solution under mild conditions. All Pt-M NPs with a small size of 3-5 nm show a Pt fcc structure, suggesting the bimetallic formation (alloy and/or partial core-shell), examined by transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray absorption fine structure (XAFS) analysis. The catalytic activities of Pt-M NPs in the hydrolytic dehydrogenation of AB reveal that Pt-Ni NPs with a ratio of 41 show the best catalytic activity and even better than that of pure Pt NPs when normalized to Pt molar amount. The Ni oxidation state in Pt-Ni NPs has been suggested to be responsible for the corresponding catalytic activity for hydrolytic dehydrogenation of AB by XAFS study. This strategy for the synthesis of Pt-M NPs is simple and environmentally benign in aqueous solution with the potential for scale-up preparation and the in situ catalytic reaction.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2014 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2014 Document type: Article
...