Your browser doesn't support javascript.
loading
Can hydrodynamic contact line paradox be solved by evaporation-condensation?
Janecek, V; Doumenc, F; Guerrier, B; Nikolayev, V S.
Affiliation
  • Janecek V; University Paris-Sud, CNRS, Lab FAST, Bat 502, Campus Universitaire, Orsay 91405, France.
  • Doumenc F; University Paris-Sud, CNRS, Lab FAST, Bat 502, Campus Universitaire, Orsay 91405, France; Sorbonne Universités, UPMC Univ Paris 06, UFR 919, 75005 Paris, France. Electronic address: doumenc@fast.u-psud.fr.
  • Guerrier B; University Paris-Sud, CNRS, Lab FAST, Bat 502, Campus Universitaire, Orsay 91405, France.
  • Nikolayev VS; Service de Physique de l'Etat Condensé, CNRS UMR 3680, IRAMIS/DSM/CEA Saclay, 91191 Gif-sur-Yvette, France.
J Colloid Interface Sci ; 460: 329-38, 2015 Dec 15.
Article in En | MEDLINE | ID: mdl-26348659
ABSTRACT
We investigate a possibility to regularize the hydrodynamic contact line singularity in the configuration of partial wetting (liquid wedge on a solid substrate) via evaporation-condensation, when an inert gas is present in the atmosphere above the liquid. The no-slip condition is imposed at the solid-liquid interface and the system is assumed to be isothermal. The mass exchange dynamics is controlled by vapor diffusion in the inert gas and interfacial kinetic resistance. The coupling between the liquid meniscus curvature and mass exchange is provided by the Kelvin effect. The atmosphere is saturated and the substrate moves at a steady velocity with respect to the liquid wedge. A multi-scale analysis is performed. The liquid dynamics description in the phase-change-controlled microregion and visco-capillary intermediate region is based on the lubrication equations. The vapor diffusion is considered in the gas phase. It is shown that from the mathematical point of view, the phase exchange relieves the contact line singularity. The liquid mass is conserved evaporation existing on a part of the meniscus and condensation occurring over another part compensate exactly each other. However, numerical estimations carried out for three common fluids (ethanol, water and glycerol) at the ambient conditions show that the characteristic length scales are tiny.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Colloid Interface Sci Year: 2015 Document type: Article Affiliation country: Francia

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Colloid Interface Sci Year: 2015 Document type: Article Affiliation country: Francia
...