Your browser doesn't support javascript.
loading
Research Resource: A Chromogranin A Reporter for Serotonin and Histamine Secreting Enteroendocrine Cells.
Engelstoft, Maja S; Lund, Mari L; Grunddal, Kaare V; Egerod, Kristoffer L; Osborne-Lawrence, Sherri; Poulsen, Steen Seier; Zigman, Jeffrey M; Schwartz, Thue W.
Affiliation
  • Engelstoft MS; Novo Nordisk Foundation Center for Basic Metabolic Research (M.S.E., M.L.L., K.V.G., K.L.E., T.W.S.), Section for Metabolic Receptology, and Laboratory for Molecular Pharmacology (M.S.E., M.L.L., K.V.G., K.L.E., T.W.S.), Department of Neuroscience and Pharmacology, Faculty of Health and Medical Scie
  • Lund ML; Novo Nordisk Foundation Center for Basic Metabolic Research (M.S.E., M.L.L., K.V.G., K.L.E., T.W.S.), Section for Metabolic Receptology, and Laboratory for Molecular Pharmacology (M.S.E., M.L.L., K.V.G., K.L.E., T.W.S.), Department of Neuroscience and Pharmacology, Faculty of Health and Medical Scie
  • Grunddal KV; Novo Nordisk Foundation Center for Basic Metabolic Research (M.S.E., M.L.L., K.V.G., K.L.E., T.W.S.), Section for Metabolic Receptology, and Laboratory for Molecular Pharmacology (M.S.E., M.L.L., K.V.G., K.L.E., T.W.S.), Department of Neuroscience and Pharmacology, Faculty of Health and Medical Scie
  • Egerod KL; Novo Nordisk Foundation Center for Basic Metabolic Research (M.S.E., M.L.L., K.V.G., K.L.E., T.W.S.), Section for Metabolic Receptology, and Laboratory for Molecular Pharmacology (M.S.E., M.L.L., K.V.G., K.L.E., T.W.S.), Department of Neuroscience and Pharmacology, Faculty of Health and Medical Scie
  • Osborne-Lawrence S; Novo Nordisk Foundation Center for Basic Metabolic Research (M.S.E., M.L.L., K.V.G., K.L.E., T.W.S.), Section for Metabolic Receptology, and Laboratory for Molecular Pharmacology (M.S.E., M.L.L., K.V.G., K.L.E., T.W.S.), Department of Neuroscience and Pharmacology, Faculty of Health and Medical Scie
  • Poulsen SS; Novo Nordisk Foundation Center for Basic Metabolic Research (M.S.E., M.L.L., K.V.G., K.L.E., T.W.S.), Section for Metabolic Receptology, and Laboratory for Molecular Pharmacology (M.S.E., M.L.L., K.V.G., K.L.E., T.W.S.), Department of Neuroscience and Pharmacology, Faculty of Health and Medical Scie
  • Zigman JM; Novo Nordisk Foundation Center for Basic Metabolic Research (M.S.E., M.L.L., K.V.G., K.L.E., T.W.S.), Section for Metabolic Receptology, and Laboratory for Molecular Pharmacology (M.S.E., M.L.L., K.V.G., K.L.E., T.W.S.), Department of Neuroscience and Pharmacology, Faculty of Health and Medical Scie
  • Schwartz TW; Novo Nordisk Foundation Center for Basic Metabolic Research (M.S.E., M.L.L., K.V.G., K.L.E., T.W.S.), Section for Metabolic Receptology, and Laboratory for Molecular Pharmacology (M.S.E., M.L.L., K.V.G., K.L.E., T.W.S.), Department of Neuroscience and Pharmacology, Faculty of Health and Medical Scie
Mol Endocrinol ; 29(11): 1658-71, 2015 Nov.
Article in En | MEDLINE | ID: mdl-26352512
ABSTRACT
Chromogranin A (ChgA) is an acidic protein found in large dense-core secretory vesicles and generally considered to be expressed in all enteroendocrine cells of the gastrointestinal (GI) tract. Here, we characterize a novel reporter mouse for ChgA, ChgA-humanized Renilla reniformis (hr)GFP. The hrGFP reporter was found in the monoamine-storing chromaffin cells of the adrenal medulla, where ChgA was originally discovered. hrGFP also was expressed in enteroendocrine cells throughout the GI tract, faithfully after the expression of ChgA, as characterized by immunohistochemistry and quantitative PCR analysis of fluorescence-activated cell sorting-purified cells, although the expression in the small intestine was weak compared with that of the stomach and colon. In the stomach, hrGFP was highly expressed in almost all histamine-storing enterochromaffin (EC)-like cells, at a lower level in the majority of serotonin-storing EC cells and ghrelin cells, in a small fraction of somatostatin cells, but was absent from gastrin cells. In the small intestine, the hrGFP reporter was selectively, but weakly expressed in EC cells, although not in any peptide-storing enteroendocrine cells. In the colon, hrGFP was exclusively expressed in EC cells but absent from the peptide-storing enteroendocrine cells. In contrast, in the pancreas, hrGFP was expressed in ß-cells, α-cells, and a fraction of pancreatic polypeptide cells. It is concluded that ChgA-hrGFP in the GI tract functions as an effective reporter, particularly for the large populations of still poorly characterized monoamine-storing enteroendocrine cells. Furthermore, our findings substantiate the potential function of ChgA as a monoamine-binding protein that facilitates the regulated endocrine secretion of large amounts of monoamines from enteroendocrine cells.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Serotonin / Enteroendocrine Cells / Green Fluorescent Proteins / Chromogranin A / Histamine Release Limits: Animals Language: En Journal: Mol Endocrinol Journal subject: BIOLOGIA MOLECULAR / ENDOCRINOLOGIA Year: 2015 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Serotonin / Enteroendocrine Cells / Green Fluorescent Proteins / Chromogranin A / Histamine Release Limits: Animals Language: En Journal: Mol Endocrinol Journal subject: BIOLOGIA MOLECULAR / ENDOCRINOLOGIA Year: 2015 Document type: Article