Your browser doesn't support javascript.
loading
p300 is not required for metabolic adaptation to endurance exercise training.
LaBarge, Samuel A; Migdal, Christopher W; Buckner, Elisa H; Okuno, Hiroshi; Gertsman, Ilya; Stocks, Ben; Barshop, Bruce A; Nalbandian, Sarah R; Philp, Andrew; McCurdy, Carrie E; Schenk, Simon.
Affiliation
  • LaBarge SA; *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, Univer
  • Migdal CW; *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, Univer
  • Buckner EH; *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, Univer
  • Okuno H; *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, Univer
  • Gertsman I; *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, Univer
  • Stocks B; *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, Univer
  • Barshop BA; *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, Univer
  • Nalbandian SR; *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, Univer
  • Philp A; *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, Univer
  • McCurdy CE; *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, Univer
  • Schenk S; *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, Univer
FASEB J ; 30(4): 1623-33, 2016 Apr.
Article in En | MEDLINE | ID: mdl-26712218
The acetyltransferase, E1a-binding protein (p300), is proposed to regulate various aspects of skeletal muscle development, metabolism, and mitochondrial function,viaits interaction with numerous transcriptional regulators and other proteins. Remarkably, however, the contribution of p300 to skeletal muscle function and metabolism,in vivo, is poorly understood. To address this, we used Cre-LoxP methodology to generate mice with skeletal muscle-specific knockout of E1a-binding protein (mKO). mKO mice were indistinguishable from their wild-type/floxed littermates, with no differences in lean mass, skeletal muscle structure, fiber type, respirometry flux, or metabolites of fatty acid and amino acid metabolism.Ex vivomuscle function in extensor digitorum longus and soleus muscles, including peak stress and time to fatigue, as well asin vivorunning capacity were also comparable. Moreover, expected adaptations to a 20 d voluntary wheel running regime were not compromised in mKO mice. Taken together, these findings demonstrate that p300 is not required for the normal development or functioning of adult skeletal muscle, nor is it required for endurance exercise-mediated mitochondrial adaptations.-LaBarge, S. A., Migdal, C. W., Buckner, E. H., Okuno, H., Gertsman, I., Stocks, B., Barshop, B. A., Nalbandian, S. R., Philp, A., McCurdy, C. E., Schenk, S. p300 is not required for metabolic adaptation to endurance exercise training.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Physical Conditioning, Animal / Adaptation, Physiological / Muscle, Skeletal / E1A-Associated p300 Protein Limits: Animals Language: En Journal: FASEB J Journal subject: BIOLOGIA / FISIOLOGIA Year: 2016 Document type: Article Country of publication: Estados Unidos

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Physical Conditioning, Animal / Adaptation, Physiological / Muscle, Skeletal / E1A-Associated p300 Protein Limits: Animals Language: En Journal: FASEB J Journal subject: BIOLOGIA / FISIOLOGIA Year: 2016 Document type: Article Country of publication: Estados Unidos