Your browser doesn't support javascript.
loading
The Effects of External Jugular Compression Applied during Head Impact Exposure on Longitudinal Changes in Brain Neuroanatomical and Neurophysiological Biomarkers: A Preliminary Investigation.
Myer, Gregory D; Yuan, Weihong; Barber Foss, Kim D; Smith, David; Altaye, Mekibib; Reches, Amit; Leach, James; Kiefer, Adam W; Khoury, Jane C; Weiss, Michal; Thomas, Staci; Dicesare, Chris; Adams, Janet; Gubanich, Paul J; Geva, Amir; Clark, Joseph F; Meehan, William P; Mihalik, Jason P; Krueger, Darcy.
Affiliation
  • Myer GD; Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; The Human Performance Laboratory, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati,
  • Yuan W; Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center , Cincinnati, OH , USA.
  • Barber Foss KD; Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; The Human Performance Laboratory, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Athletic Training, Division of Health Sciences, Mount St.
  • Smith D; Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Neurosurgery, NorthShore University Health Systems, Evanston, IL, USA.
  • Altaye M; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center , Cincinnati, OH , USA.
  • Reches A; ElMindA, Ltd. , Herzliya , Israel.
  • Leach J; Division of Radiology, Cincinnati Children's Hospital Medical Center , Cincinnati, OH , USA.
  • Kiefer AW; Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; The Human Performance Laboratory, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati,
  • Khoury JC; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center , Cincinnati, OH , USA.
  • Weiss M; ElMindA, Ltd. , Herzliya , Israel.
  • Thomas S; Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; The Human Performance Laboratory, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
  • Dicesare C; Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; The Human Performance Laboratory, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
  • Adams J; Division of Radiology, Cincinnati Children's Hospital Medical Center , Cincinnati, OH , USA.
  • Gubanich PJ; Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
  • Geva A; ElMindA, Ltd., Herzliya, Israel; Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer Sheva, Israel.
  • Clark JF; Department of Neurology, College of Medicine, University of Cincinnati , Cincinnati, OH , USA.
  • Meehan WP; The Micheli Center for Sports Injury Prevention, Waltham, MA, USA; Division of Sports Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics and Orthopedics, Harvard Medical School, Boston, MA, USA.
  • Mihalik JP; Department of Exercise and Sport Science, Matthew Gfeller Sport-Related Traumatic Brain Injury Research Center, University of North Carolina , Chapel Hill, NC , USA.
  • Krueger D; Division of Neurology, Cincinnati Children's Hospital Medical Center , Cincinnati, OH , USA.
Front Neurol ; 7: 74, 2016.
Article in En | MEDLINE | ID: mdl-27375546
ABSTRACT

OBJECTIVES:

Utilize a prospective in vivo clinical trial to evaluate the potential for mild neck compression applied during head impact exposure to reduce anatomical and physiological biomarkers of brain injury.

METHODS:

This project utilized a prospective randomized controlled trial to evaluate effects of mild jugular vein (neck) compression (collar) relative to controls (no collar) during a competitive hockey season (males; 16.3 ± 1.2 years). The collar was designed to mildly compress the jugular vein bilaterally with the goal to increase intracranial blood volume to reduce risk of brain slosh injury during head impact exposure. Helmet sensors were used to collect daily impact data in excess of 20 g (games and practices) and the primary outcome measures, which included changes in white matter (WM) microstructure, were assessed by diffusion tensor imaging (DTI). Specifically, four DTI

measures:

fractional anisotropy, mean diffusivity (MD), axial diffusivity, and radial diffusivity (RD) were used in the study. These metrics were analyzed using the tract-based Spatial Statistics (TBSS) approach - a voxel-based analysis. In addition, electroencephalography-derived event-related potentials were used to assess changes in brain network activation (BNA) between study groups.

RESULTS:

For athletes not wearing the collar, DTI measures corresponding to a disruption of WM microstructure, including MD and RD, increased significantly from pre-season to mid-season (p < 0.05). Athletes wearing the collar did not show a significant change in either MD or RD despite similar accumulated linear accelerations from head impacts (p > 0.05). In addition to these anatomical findings, electrophysiological network analysis of the degree of congruence in the network electrophysiological activation pattern demonstrated concomitant changes in brain network dynamics in the non-collar group only (p < 0.05). Similar to the DTI findings, the increased change in BNA score in the non-collar relative to the collar group was statistically significant (p < 0.01). Changes in DTI outcomes were also directly correlated with altered brain network dynamics (r = 0.76; p < 0.05) as measured by BNA.

CONCLUSION:

Group differences in the longitudinal changes in both neuroanatomical and electrophysiological measures, as well as the correlation between the measures, provide initial evidence indicating that mild jugular vein compression may have reduced alterations in the WM response to head impacts during a competitive hockey season. The data indicate sport-related alterations in WM microstructure were ameliorated by application of jugular compression during head impact exposure. These results may lead to a novel line of research inquiry to evaluate the effects of protecting the brain from sports-related head impacts via optimized intracranial fluid dynamics.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Clinical_trials / Risk_factors_studies Language: En Journal: Front Neurol Year: 2016 Document type: Article Publication country: CH / SUIZA / SUÍÇA / SWITZERLAND

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Clinical_trials / Risk_factors_studies Language: En Journal: Front Neurol Year: 2016 Document type: Article Publication country: CH / SUIZA / SUÍÇA / SWITZERLAND