Your browser doesn't support javascript.
loading
Evidence for apical-basal transition in the delay of the reflection components of otoacoustic emissions.
Moleti, A; Pistilli, D; Sisto, R.
Affiliation
  • Moleti A; Physics Department, University of Roma Tor Vergata, Via della Ricerca Scientifica, 1, 00133 Roma, Italy.
  • Pistilli D; Physics Department, University of Roma Tor Vergata, Via della Ricerca Scientifica, 1, 00133 Roma, Italy.
  • Sisto R; INAIL Research, Via di Fontana Candida, 1, 00044 Monteporzio Catone (RM), Italy.
J Acoust Soc Am ; 141(1): 116, 2017 01.
Article in En | MEDLINE | ID: mdl-28147610
ABSTRACT
Stimulus-frequency, transient-evoked, and distortion product otoacoustic emissions (OAEs) have been measured in eight normal-hearing human ears over a wide stimulus level range, with high spectral resolution. The single-reflection component of the response was isolated using time-frequency filtering, and its average delay was measured as a function of frequency and stimulus level. The apical-basal transition was studied by fitting the average delay of the filtered single-reflection OAEs, expressed in number of cycles, to a three-slope power-law function with two knot frequencies. The results show that the scale-invariant prediction of constant dimensionless delay approximately holds only over a narrow intermediate frequency range (1-2.5 kHz). Below 1 kHz, and, to some extent, above 2.5 kHz, the dimensionless delay increases with frequency, at all stimulus levels. Comparison with the numerical simulations of a delayed-stiffness active cochlear model show that the increase of tuning with frequency reported by behavioral experiments only partly explains this result. The low-frequency scaling symmetry breaking associated with the deviation of the Greenwood tonotopic map from a pure exponential function is also insufficient to explain the steep low-frequency increase of the OAE delay. Other sources of symmetry breaking, not included in the model, could therefore play a role.

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: J Acoust Soc Am Year: 2017 Document type: Article Affiliation country: Italia

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: J Acoust Soc Am Year: 2017 Document type: Article Affiliation country: Italia