A statistically rigorous sampling design to integrate avian monitoring and management within Bird Conservation Regions.
PLoS One
; 12(10): e0185924, 2017.
Article
in En
| MEDLINE
| ID: mdl-29065128
Monitoring is an essential component of wildlife management and conservation. However, the usefulness of monitoring data is often undermined by the lack of 1) coordination across organizations and regions, 2) meaningful management and conservation objectives, and 3) rigorous sampling designs. Although many improvements to avian monitoring have been discussed, the recommendations have been slow to emerge in large-scale programs. We introduce the Integrated Monitoring in Bird Conservation Regions (IMBCR) program designed to overcome the above limitations. Our objectives are to outline the development of a statistically defensible sampling design to increase the value of large-scale monitoring data and provide example applications to demonstrate the ability of the design to meet multiple conservation and management objectives. We outline the sampling process for the IMBCR program with a focus on the Badlands and Prairies Bird Conservation Region (BCR 17). We provide two examples for the Brewer's sparrow (Spizella breweri) in BCR 17 demonstrating the ability of the design to 1) determine hierarchical population responses to landscape change and 2) estimate hierarchical habitat relationships to predict the response of the Brewer's sparrow to conservation efforts at multiple spatial scales. The collaboration across organizations and regions provided economy of scale by leveraging a common data platform over large spatial scales to promote the efficient use of monitoring resources. We designed the IMBCR program to address the information needs and core conservation and management objectives of the participating partner organizations. Although it has been argued that probabilistic sampling designs are not practical for large-scale monitoring, the IMBCR program provides a precedent for implementing a statistically defensible sampling design from local to bioregional scales. We demonstrate that integrating conservation and management objectives with rigorous statistical design and analyses ensures reliable knowledge about bird populations that is relevant and integral to bird conservation at multiple scales.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Birds
/
Environmental Monitoring
/
Conservation of Natural Resources
Type of study:
Guideline
Limits:
Animals
Language:
En
Journal:
PLoS One
Journal subject:
CIENCIA
/
MEDICINA
Year:
2017
Document type:
Article
Affiliation country:
Estados Unidos
Country of publication:
Estados Unidos