Your browser doesn't support javascript.
loading
Generation of a SMO homozygous knockout human embryonic stem cell line WAe001-A-16 by CRISPR/Cas9 editing.
Wu, Feima; Gao, Ge; Pan, Tingcai; Yang, Zhen; Xu, Guosheng; Abbas, Nasir; Liu, Yanli; Chen, Yan; Tan, Shenglin; You, Kai; Ke, Xinrong; Zhuang, Yuanqi; Lin, Xianhua; Yang, Fan; Li, Yin-Xiong.
Affiliation
  • Wu F; Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Key Laboratory of Regenerativ
  • Gao G; Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Key Laboratory of Regenerativ
  • Pan T; Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Key Laboratory of Regenerativ
  • Yang Z; Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Key Laboratory of Regenerativ
  • Xu G; Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Key Laboratory of Regenerativ
  • Abbas N; Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Key Laboratory of Regenerativ
  • Liu Y; Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Key Laboratory of Regenerativ
  • Chen Y; Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Key Laboratory of Regenerativ
  • Tan S; Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Key Laboratory of Regenerativ
  • You K; Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Key Laboratory of Regenerativ
  • Ke X; Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Key Laboratory of Regenerativ
  • Zhuang Y; Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Key Laboratory of Regenerativ
  • Lin X; Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Key Laboratory of Regenerativ
  • Yang F; Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Key Laboratory of Regenerativ
  • Li YX; Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Key Laboratory of Regenerativ
Stem Cell Res ; 27: 5-9, 2018 03.
Article in En | MEDLINE | ID: mdl-29278761
The human SMO protein encoded by the smoothened (SMO) gene acts as a positive mediator for Hedgehog signaling. This pathway regulates many cellular activities, developmental morphogenesis, and tumorigenesis. Using CRISPR/Cas9 to edit human embryonic stem cell line WA01 (H1), we established a SMO mutant cell line (WAe001-A-16). This cell line has a 40bp homozygous deletion in exon 2 of SMO leading to a shift in the open reading frame and early termination at amino acid position 287. WAe001-A-16 maintains a normal karyotype, parental cell morphology, pluripotency markers, and the capacity to differentiate into all three germline layers.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Embryonic Stem Cells / Human Embryonic Stem Cells / Smoothened Receptor Limits: Humans Language: En Journal: Stem Cell Res Year: 2018 Document type: Article Country of publication: Reino Unido

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Embryonic Stem Cells / Human Embryonic Stem Cells / Smoothened Receptor Limits: Humans Language: En Journal: Stem Cell Res Year: 2018 Document type: Article Country of publication: Reino Unido