Your browser doesn't support javascript.
loading
In Vitro and In Vivo Characterization of a Preclinical Irradiation-Adapted Model for Ewing Sarcoma.
Shapiro, Mary Carroll; Tang, Tien; Dasgupta, Atreyi; Kurenbekova, Lyazat; Shuck, Ryan; Gaber, M Waleed; Yustein, Jason T.
Affiliation
  • Shapiro MC; Faris D. Virani Ewing Sarcoma Center, Texas Children's Cancer Center and Dan L. Duncan Cancer Center, Department of Pediatrics, Hematology and Oncology, Baylor College of Medicine, Houston, Texas.
  • Tang T; Department of Bioengineering, Rice University, Houston, Texas.
  • Dasgupta A; Faris D. Virani Ewing Sarcoma Center, Texas Children's Cancer Center and Dan L. Duncan Cancer Center, Department of Pediatrics, Hematology and Oncology, Baylor College of Medicine, Houston, Texas.
  • Kurenbekova L; Faris D. Virani Ewing Sarcoma Center, Texas Children's Cancer Center and Dan L. Duncan Cancer Center, Department of Pediatrics, Hematology and Oncology, Baylor College of Medicine, Houston, Texas.
  • Shuck R; Faris D. Virani Ewing Sarcoma Center, Texas Children's Cancer Center and Dan L. Duncan Cancer Center, Department of Pediatrics, Hematology and Oncology, Baylor College of Medicine, Houston, Texas.
  • Gaber MW; Hematology-Oncology Section, Department of Pediatrics, Baylor College of Medicine, Houston, Texas.
  • Yustein JT; Faris D. Virani Ewing Sarcoma Center, Texas Children's Cancer Center and Dan L. Duncan Cancer Center, Department of Pediatrics, Hematology and Oncology, Baylor College of Medicine, Houston, Texas. Electronic address: yustein@bcm.edu.
Int J Radiat Oncol Biol Phys ; 101(1): 118-127, 2018 05 01.
Article in En | MEDLINE | ID: mdl-29534895
ABSTRACT

PURPOSE:

Radiation therapy (RT) is a viable therapeutic option for Ewing sarcoma (ES) patients. However, little progress has been made to elucidate the mechanisms of radioresistance. This study establishes a novel ES irradiation-adapted model designed to assess molecular and 18F fluorodeoxyglucose (FDG) positron emission tomography (PET) alterations secondary to RT. METHODS AND MATERIALS Radiation-adapted cell lines (RACLs) were created in vitro by exposing ES human cell lines to fractionated doses of radiation. Assays to assess migration or invasion potential and RNA expression were performed on the RACLs. Orthotopic intratibial in vivo investigations were performed with irradiation-sensitive and irradiation-adapted ES cells to generate tumors. Transplanted mice were imaged using 18F-FDG PET followed by fractionated RT directed at the primary tumor. Mice were monitored for tumor regression and change in metabolic activity using 18F-FDG PET imaging. Protein expression analyses were performed on the RACLs and orthotopic tumors.

RESULTS:

Exposure to fractionated doses of radiation caused a significant increase in migratory and invasive properties in the RACLs when compared with nonirradiated wild-type ES cells. RACL transcriptomic and proteomic analysis suggests enhanced activation of the mammalian target of rapamycin-AKT pathway when compared with wild-type ES cells. Irradiation-adapted tumors demonstrated significantly less tumor regression (P = .03) than wild-type tumors. Wild-type tumors also had decreased expression of lactate dehydrogenase A protein and significantly lower metabolic activity after RT compared with irradiation-adapted tumors (P = .03).

CONCLUSIONS:

We developed novel in vitro and in vivo irradiation-adapted ES models. In vitro investigations revealed increased migratory and invasive phenotypes in the RACLs. In vivo investigations demonstrated increased metabolic activity and significantly decreased sensitivity to RT in the irradiation-adapted tumors as demonstrated by growth response curves and 18F-FDG PET activity. Investigations of the RACLs identified possible radiosensitizing-dependent targets in lactate dehydrogenase A and the mammalian target of rapamycin-AKT pathway.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Radiation Tolerance / Sarcoma, Ewing / Bone Neoplasms Limits: Animals / Humans Language: En Journal: Int J Radiat Oncol Biol Phys Year: 2018 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Radiation Tolerance / Sarcoma, Ewing / Bone Neoplasms Limits: Animals / Humans Language: En Journal: Int J Radiat Oncol Biol Phys Year: 2018 Document type: Article