Your browser doesn't support javascript.
loading
Shepherding DNA ends: Rif1 protects telomeres and chromosome breaks.
Fontana, Gabriele A; Reinert, Julia K; Thomä, Nicolas H; Rass, Ulrich.
Affiliation
  • Fontana GA; Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
  • Reinert JK; Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
  • Thomä NH; University of Basel, Petersplatz 10, CH-4003 Basel, Switzerland.
  • Rass U; Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
Microb Cell ; 5(7): 327-343, 2018 May 17.
Article in En | MEDLINE | ID: mdl-29992129
ABSTRACT
Cells have evolved conserved mechanisms to protect DNA ends, such as those at the termini of linear chromosomes, or those at DNA double-strand breaks (DSBs). In eukaryotes, DNA ends at chromosomal termini are packaged into proteinaceous structures called telomeres. Telomeres protect chromosome ends from erosion, inadvertent activation of the cellular DNA damage response (DDR), and telomere fusion. In contrast, cells must respond to damage-induced DNA ends at DSBs by harnessing the DDR to restore chromosome integrity, avoiding genome instability and disease. Intriguingly, Rif1 (Rap1-interacting factor 1) has been implicated in telomere homeostasis as well as DSB repair. The protein was first identified in Saccharomyces cerevisiae as being part of the proteinaceous telosome. In mammals, RIF1 is not associated with intact telomeres, but was found at chromosome breaks, where RIF1 has emerged as a key mediator of pathway choice between the two evolutionary conserved DSB repair pathways of non-homologous end-joining (NHEJ) and homologous recombination (HR). While this functional dichotomy has long been a puzzle, recent findings link yeast Rif1 not only to telomeres, but also to DSB repair, and mechanistic parallels likely exist. In this review, we will provide an overview of the actions of Rif1 at DNA ends and explore how exclusion of end-processing factors might be the underlying principle allowing Rif1 to fulfill diverse biological roles at telomeres and chromosome breaks.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: Microb Cell Year: 2018 Document type: Article Affiliation country: Suiza

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: Microb Cell Year: 2018 Document type: Article Affiliation country: Suiza