Mechanical heterogeneity in ionic liquids.
J Chem Phys
; 148(19): 193803, 2018 May 21.
Article
in En
| MEDLINE
| ID: mdl-30307183
Molecular dynamics (MD) simulations of five ionic liquids based on 1-alkyl-3-methylimidazolium cations, [C n C1im]+, have been performed in order to calculate high-frequency elastic moduli and to evaluate heterogeneity of local elastic moduli. The MD simulations of [C n C1im][NO3], n = 2, 4, 6, and 8, assessed the effect of domain segregation when the alkyl chain length increases, and [C8C1im][PF6] assessed the effect of strength of anion-cation interaction. Dispersion curves of excitation energies of longitudinal and transverse acoustic, LA and TA, modes were obtained from time correlation functions of mass currents at different wavevectors. High-frequency sound velocity of LA modes depends on the alkyl chain length, but sound velocity for TA modes does not. High-frequency bulk and shear moduli, K ∞ and G ∞ , depend on the alkyl chain length because of a density effect. Both K ∞ and G ∞ are strongly dependent on the anion. The calculation of local bulk and shear moduli was accomplished by performing bulk and shear deformations of the systems cooled to 0 K. The simulations showed a clear connection between structural and elastic modulus heterogeneities. The development of nano-heterogeneous structure with increasing length of the alkyl chain in [C n C1im][NO3] implies lower values for local bulk and shear moduli in the non-polar domains. The mean value and the standard deviations of distributions of local elastic moduli decrease when [NO3]- is replaced by the less coordinating [PF6]- anion.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
J Chem Phys
Year:
2018
Document type:
Article
Affiliation country:
Brasil
Country of publication:
Estados Unidos