Your browser doesn't support javascript.
loading
GW170817: Measurements of Neutron Star Radii and Equation of State.
Abbott, B P; Abbott, R; Abbott, T D; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agarwal, B; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allen, G; Allocca, A; Aloy, M A; Altin, P A; Amato, A; Ananyeva, A; Anderson, S B; Anderson, W G; Angelova, S V; Antier, S; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arène, M; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Atallah, D V; Aubin, F; Aufmuth, P; Aulbert, C; AultONeal, K; Austin, C; Avila-Alvarez, A; Babak, S.
Affiliation
  • Abbott BP; LIGO, California Institute of Technology, Pasadena, California 91125, USA.
  • Abbott R; LIGO, California Institute of Technology, Pasadena, California 91125, USA.
  • Abbott TD; Louisiana State University, Baton Rouge, Louisiana 70803, USA.
  • Acernese F; Università di Salerno, Fisciano, I-84084 Salerno, Italy.
  • Ackley K; INFN, Sezione di Napoli, Complesso Universitario di Monte S.Angelo, I-80126 Napoli, Italy.
  • Adams C; OzGrav, School of Physics & Astronomy, Monash University, Clayton 3800, Victoria, Australia.
  • Adams T; LIGO Livingston Observatory, Livingston, Louisiana 70754, USA.
  • Addesso P; Laboratoire d'Annecy de Physique des Particules (LAPP), Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, F-74941 Annecy, France.
  • Adhikari RX; University of Sannio at Benevento, I-82100 Benevento, Italy and INFN, Sezione di Napoli, I-80100 Napoli, Italy.
  • Adya VB; LIGO, California Institute of Technology, Pasadena, California 91125, USA.
  • Affeldt C; Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany.
  • Agarwal B; Leibniz Universität Hannover, D-30167 Hannover, Germany.
  • Agathos M; Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany.
  • Agatsuma K; Leibniz Universität Hannover, D-30167 Hannover, Germany.
  • Aggarwal N; NCSA, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
  • Aguiar OD; University of Cambridge, Cambridge CB2 1TN, United Kingdom.
  • Aiello L; Nikhef, Science Park 105, 1098 XG Amsterdam, Netherlands.
  • Ain A; LIGO, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  • Ajith P; Instituto Nacional de Pesquisas Espaciais, 12227-010 São José dos Campos, São Paulo, Brazil.
  • Allen B; Gran Sasso Science Institute (GSSI), I-67100 L'Aquila, Italy.
  • Allen G; INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi, Italy.
  • Allocca A; Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India.
  • Aloy MA; International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India.
  • Altin PA; Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany.
  • Amato A; Leibniz Universität Hannover, D-30167 Hannover, Germany.
  • Ananyeva A; University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA.
  • Anderson SB; NCSA, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
  • Anderson WG; Università di Pisa, I-56127 Pisa, Italy.
  • Angelova SV; INFN, Sezione di Pisa, I-56127 Pisa, Italy.
  • Antier S; Departamento de Astronomía y Astrofísica, Universitat de València, E-46100 Burjassot, València, Spain.
  • Appert S; OzGrav, Australian National University, Canberra, Australian Capital Territory 0200, Australia.
  • Arai K; Laboratoire des Matériaux Avancés (LMA), CNRS/IN2P3, F-69622 Villeurbanne, France.
  • Araya MC; LIGO, California Institute of Technology, Pasadena, California 91125, USA.
  • Areeda JS; LIGO, California Institute of Technology, Pasadena, California 91125, USA.
  • Arène M; University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA.
  • Arnaud N; SUPA, University of Strathclyde, Glasgow G1 1XQ, United Kingdom.
  • Arun KG; LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, F-91898 Orsay, France.
  • Ascenzi S; LIGO, California Institute of Technology, Pasadena, California 91125, USA.
  • Ashton G; LIGO, California Institute of Technology, Pasadena, California 91125, USA.
  • Ast M; LIGO, California Institute of Technology, Pasadena, California 91125, USA.
  • Aston SM; California State University Fullerton, Fullerton, California 92831, USA.
  • Astone P; APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, F-75205 Paris Cedex 13, France.
  • Atallah DV; LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, F-91898 Orsay, France.
  • Aubin F; European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy.
  • Aufmuth P; Chennai Mathematical Institute, Chennai 603103, India.
  • Aulbert C; Università di Roma Tor Vergata, I-00133 Roma, Italy.
  • AultONeal K; INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy.
  • Austin C; OzGrav, School of Physics & Astronomy, Monash University, Clayton 3800, Victoria, Australia.
  • Avila-Alvarez A; Universität Hamburg, D-22761 Hamburg, Germany.
  • Babak S; LIGO Livingston Observatory, Livingston, Louisiana 70754, USA.
Phys Rev Lett ; 121(16): 161101, 2018 Oct 19.
Article in En | MEDLINE | ID: mdl-30387654
ABSTRACT
On 17 August 2017, the LIGO and Virgo observatories made the first direct detection of gravitational waves from the coalescence of a neutron star binary system. The detection of this gravitational-wave signal, GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions found in the interior of these stars. The initial, minimal-assumption analysis of the LIGO and Virgo data placed constraints on the tidal effects of the coalescing bodies, which were then translated to constraints on neutron star radii. Here, we expand upon previous analyses by working under the hypothesis that both bodies were neutron stars that are described by the same equation of state and have spins within the range observed in Galactic binary neutron stars. Our analysis employs two

methods:

the use of equation-of-state-insensitive relations between various macroscopic properties of the neutron stars and the use of an efficient parametrization of the defining function p(ρ) of the equation of state itself. From the LIGO and Virgo data alone and the first method, we measure the two neutron star radii as R_{1}=10.8_{-1.7}^{+2.0} km for the heavier star and R_{2}=10.7_{-1.5}^{+2.1} km for the lighter star at the 90% credible level. If we additionally require that the equation of state supports neutron stars with masses larger than 1.97 M_{⊙} as required from electromagnetic observations and employ the equation-of-state parametrization, we further constrain R_{1}=11.9_{-1.4}^{+1.4} km and R_{2}=11.9_{-1.4}^{+1.4} km at the 90% credible level. Finally, we obtain constraints on p(ρ) at supranuclear densities, with pressure at twice nuclear saturation density measured at 3.5_{-1.7}^{+2.7}×10^{34} dyn cm^{-2} at the 90% level.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Phys Rev Lett Year: 2018 Document type: Article Affiliation country: Estados Unidos

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Phys Rev Lett Year: 2018 Document type: Article Affiliation country: Estados Unidos
...