Your browser doesn't support javascript.
loading
Improved estimation of cancer dependencies from large-scale RNAi screens using model-based normalization and data integration.
McFarland, James M; Ho, Zandra V; Kugener, Guillaume; Dempster, Joshua M; Montgomery, Phillip G; Bryan, Jordan G; Krill-Burger, John M; Green, Thomas M; Vazquez, Francisca; Boehm, Jesse S; Golub, Todd R; Hahn, William C; Root, David E; Tsherniak, Aviad.
Affiliation
  • McFarland JM; Broad Institute of MIT and Harvard, Cambridge, 02142, MA, USA.
  • Ho ZV; Broad Institute of MIT and Harvard, Cambridge, 02142, MA, USA.
  • Kugener G; Broad Institute of MIT and Harvard, Cambridge, 02142, MA, USA.
  • Dempster JM; Broad Institute of MIT and Harvard, Cambridge, 02142, MA, USA.
  • Montgomery PG; Broad Institute of MIT and Harvard, Cambridge, 02142, MA, USA.
  • Bryan JG; Broad Institute of MIT and Harvard, Cambridge, 02142, MA, USA.
  • Krill-Burger JM; Broad Institute of MIT and Harvard, Cambridge, 02142, MA, USA.
  • Green TM; Broad Institute of MIT and Harvard, Cambridge, 02142, MA, USA.
  • Vazquez F; Broad Institute of MIT and Harvard, Cambridge, 02142, MA, USA.
  • Boehm JS; Dana-Farber Cancer Institute, Boston, 02215, MA, USA.
  • Golub TR; Broad Institute of MIT and Harvard, Cambridge, 02142, MA, USA.
  • Hahn WC; Broad Institute of MIT and Harvard, Cambridge, 02142, MA, USA.
  • Root DE; Dana-Farber Cancer Institute, Boston, 02215, MA, USA.
  • Tsherniak A; Harvard Medical School, Boston, 02115, MA, USA.
Nat Commun ; 9(1): 4610, 2018 11 02.
Article in En | MEDLINE | ID: mdl-30389920
The availability of multiple datasets comprising genome-scale RNAi viability screens in hundreds of diverse cancer cell lines presents new opportunities for understanding cancer vulnerabilities. Integrated analyses of these data to assess differential dependency across genes and cell lines are challenging due to confounding factors such as batch effects and variable screen quality, as well as difficulty assessing gene dependency on an absolute scale. To address these issues, we incorporated cell line screen-quality parameters and hierarchical Bayesian inference into DEMETER2, an analytical framework for analyzing RNAi screens ( https://depmap.org/R2-D2 ). This model substantially improves estimates of gene dependency across a range of performance measures, including identification of gold-standard essential genes and agreement with CRISPR/Cas9-based viability screens. It also allows us to integrate information across three large RNAi screening datasets, providing a unified resource representing the most extensive compilation of cancer cell line genetic dependencies to date.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Genetic Testing / RNA Interference / Models, Genetic / Neoplasms Type of study: Prognostic_studies Limits: Humans Language: En Journal: Nat Commun Journal subject: BIOLOGIA / CIENCIA Year: 2018 Document type: Article Affiliation country: Estados Unidos Country of publication: Reino Unido

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Genetic Testing / RNA Interference / Models, Genetic / Neoplasms Type of study: Prognostic_studies Limits: Humans Language: En Journal: Nat Commun Journal subject: BIOLOGIA / CIENCIA Year: 2018 Document type: Article Affiliation country: Estados Unidos Country of publication: Reino Unido