Your browser doesn't support javascript.
loading
Potential of Piezoelectric MEMS Resonators for Grape Must Fermentation Monitoring.
Pfusterschmied, Georg; Toledo, Javier; Kucera, Martin; Steindl, Wolfgang; Zemann, Stefan; Ruiz-Díez, Víctor; Schneider, Michael; Bittner, Achim; Sanchez-Rojas, Jose Luis; Schmid, Ulrich.
Affiliation
  • Pfusterschmied G; Institute of Sensor and Actuator Systems, TU Wien, 1040 Vienna, Austria. georg.pfusterschmied@tuwien.ac.at.
  • Toledo J; Group of Microsystems, Actuators and Sensors, E.T.S.I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain. javier.toledo.serrano@gmail.com.
  • Kucera M; Institute of Sensor and Actuator Systems, TU Wien, 1040 Vienna, Austria. martin.kucera@tuwien.ac.at.
  • Steindl W; Institute of Sensor and Actuator Systems, TU Wien, 1040 Vienna, Austria. steindl.wolfgang@gmail.com.
  • Zemann S; Institute of Sensor and Actuator Systems, TU Wien, 1040 Vienna, Austria. stefan.zemann@gmx.at.
  • Ruiz-Díez V; Group of Microsystems, Actuators and Sensors, E.T.S.I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain. victor.ruiz@uclm.es.
  • Schneider M; Institute of Sensor and Actuator Systems, TU Wien, 1040 Vienna, Austria. michael.schneider@tuwien.ac.at.
  • Bittner A; Institute of Sensor and Actuator Systems, TU Wien, 1040 Vienna, Austria. achim.bittner@tuwien.ac.at.
  • Sanchez-Rojas JL; Group of Microsystems, Actuators and Sensors, E.T.S.I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain. joseluis.saldavero@uclm.es.
  • Schmid U; Institute of Sensor and Actuator Systems, TU Wien, 1040 Vienna, Austria. ulrich.e366.schmid@tuwien.ac.at.
Micromachines (Basel) ; 8(7)2017 Jun 26.
Article in En | MEDLINE | ID: mdl-30400395
In this study grape must fermentation is monitored using a self-actuating/self-sensing piezoelectric micro-electromechanical system (MEMS) resonator. The sensor element is excited in an advanced roof tile-shaped vibration mode, which ensures high Q-factors in liquids (i.e., Q ~100 in isopropanol), precise resonance frequency analysis, and a fast measurement procedure. Two sets of artificial model solutions are prepared, representing an ordinary and a stuck/sluggish wine fermentation process. The precision and reusability of the sensor are shown using repetitive measurements (10 times), resulting in standard deviations of the measured resonance frequencies of ~0.1%, Q-factor of ~11%, and an electrical conductance peak height of ~12%, respectively. With the applied evaluation procedure, moderate standard deviations of ~1.1% with respect to density values are achieved. Based on these results, the presented sensor concept is capable to distinguish between ordinary and stuck wine fermentation, where the evolution of the wine density associated with the decrease in sugar and the increase in ethanol concentrations during fermentation processes causes a steady increase in the resonance frequency for an ordinary fermentation. Finally, the first test measurements in real grape must are presented, showing a similar trend in the resonance frequency compared to the results of an artificial solutions, thus proving that the presented sensor concept is a reliable and reusable platform for grape must fermentation monitoring.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: Micromachines (Basel) Year: 2017 Document type: Article Affiliation country: Austria Country of publication: Suiza

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: Micromachines (Basel) Year: 2017 Document type: Article Affiliation country: Austria Country of publication: Suiza