Your browser doesn't support javascript.
loading
Phytoavailability of 137Cs and stable Cs in soils from different parent materials in Fukushima, Japan.
Ogasawara, Sho; Eguchi, Tetsuya; Nakao, Atsushi; Fujimura, Shigeto; Takahashi, Yoshihiko; Matsunami, Hisaya; Tsukada, Hirofumi; Yanai, Junta; Shinano, Takuro.
Affiliation
  • Ogasawara S; Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, 606-8522, Japan; Japan Society for the Promotion of Science, 102-0083, Tokyo, Japan. Electronic address: shooga.0206@gmail.com.
  • Eguchi T; Tohoku Agricultural Research Centre, NARO, Fukushima, 960-2156, Japan.
  • Nakao A; Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, 606-8522, Japan.
  • Fujimura S; Tohoku Agricultural Research Centre, NARO, Fukushima, 960-2156, Japan.
  • Takahashi Y; Tohoku Agricultural Research Centre, NARO, Fukushima, 960-2156, Japan.
  • Matsunami H; Tohoku Agricultural Research Centre, NARO, Fukushima, 960-2156, Japan.
  • Tsukada H; Institute of Environmental Radioactivity, Fukushima University, Fukushima, 960-1296, Japan.
  • Yanai J; Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, 606-8522, Japan.
  • Shinano T; Tohoku Agricultural Research Centre, NARO, Fukushima, 960-2156, Japan.
J Environ Radioact ; 198: 117-125, 2019 Mar.
Article in En | MEDLINE | ID: mdl-30605858
Weathered micaceous minerals (micas) are able to release potassium ion (K+) and fix caesium-137 (137Cs), both of which reduce soil-to-plant transfer of 137Cs. Among micas, trioctahedral micas such as biotite is expected to have a stronger ability to supply nonexchangeable K+ and a higher amount of Cs fixation sites than dioctahedral micas such as illite. Although biotite is predominant in granitic soils (G soils), illite is mainly dominant in sedimentary rock soils (S soils). Therefore, we hypothesized that G soils have a lower 137Cs transfer risk than S soils because of this difference in mineralogy. The objective of the present study was to determine the transfer factor (TF) of 137Cs and stable Cs (SCs) and to elucidate the determinant factors of TFs for G and S soils in Fukushima, Japan. Pot experiments were carried out with rice (Oryza sativa L. cv. Hokuriku 193) in G and S soils to determine the TF of 137Cs (TF-137Cs) and stable Cs (TF-SCs) under K-deficient conditions. TF-137Cs and TF-SCs were highly correlated, and both were significantly lower for G soils than for S soils. Higher TF values were shown for soils with lower amounts of exchangeable and nonexchangeable K or with higher percentages of exchangeable 137Cs (ex137Cs). The percentage of ex137Cs was negatively correlated with the amount of Cs fixation sites, represented by the radiocaesium interception potential. Thus, we concluded that smaller TF values for G soils were caused by a stronger ability to supply nonexchangeable K+ and a higher amount of Cs fixation sites. These findings will contribute to the establishment of soil screening techniques based on 137Cs transfer risk in Fukushima prefecture.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Soil Pollutants, Radioactive / Cesium Radioisotopes / Fukushima Nuclear Accident Country/Region as subject: Asia Language: En Journal: J Environ Radioact Journal subject: SAUDE AMBIENTAL Year: 2019 Document type: Article Country of publication: Reino Unido

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Soil Pollutants, Radioactive / Cesium Radioisotopes / Fukushima Nuclear Accident Country/Region as subject: Asia Language: En Journal: J Environ Radioact Journal subject: SAUDE AMBIENTAL Year: 2019 Document type: Article Country of publication: Reino Unido