Your browser doesn't support javascript.
loading
Inhibition of microRNA-155 attenuates sympathetic neural remodeling following myocardial infarction via reducing M1 macrophage polarization and inflammatory responses in mice.
Hu, Juan; Huang, Cong-Xin; Rao, Pan-Pan; Zhou, Ji-Peng; Wang, Xi; Tang, Lu; Liu, Ming-Xin; Zhang, Guo-Gang.
Affiliation
  • Hu J; Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Institute of Hypertension, Central South Unive
  • Huang CX; Department of Cardiology, Renmin Hospital of Wuhan University, Hubei, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
  • Rao PP; Department of Cardiology, Renmin Hospital of Wuhan University, Hubei, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
  • Zhou JP; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Institute of Hypertension, Central South University, Changsha, Hunan, PR China.
  • Wang X; Department of Cardiology, Renmin Hospital of Wuhan University, Hubei, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
  • Tang L; Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Institute of Hypertension, Central South Unive
  • Liu MX; Department of Cardiology, Renmin Hospital of Wuhan University, Hubei, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
  • Zhang GG; Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Institute of Hypertension, Central South Unive
Eur J Pharmacol ; 851: 122-132, 2019 May 15.
Article in En | MEDLINE | ID: mdl-30721702
ABSTRACT
Inflammation plays an important role in sympathetic neural remodeling induced by myocardial infarction (MI). MiR-155 is a vital regulator of inflammatory responses, and macrophage-secreted miR-155 promotes cardiac fibrosis and hypertrophy. However, whether miR-155 influences MI-induced sympathetic neural remodeling is not clear. Therefore, we examined the role of miR-155 in MI-induced sympathetic neural remodeling and the related mechanisms in both an mouse model and in lipopolysaccharide (LPS)-stimulated bone marrow-derived macrophages (BMDMs). Our data showed that miR-155 expression was significantly enhanced in the myocardial tissues of MI mice compared to sham mice. Also, MI up-regulated the electrophysiological parameters, M1 macrophage polarization, inflammatory responses, and suppressor of cytokine signaling 1 (SOCS1) expression, which coincided with the increased expression of sympathetic nerve remodeling markers(nerve growth factor, tyrosine hydroxylase and growth-associated protein 43). Except for SOCS1, these proteins were attenuated by miR-155 antagomir. In vitro, LPS-stimulation promoted miR-155 expression in BMDMs. Consistent with the in vivo findings, miR-155 antagomir diminished the LPS-induced M1 macrophage polarization, nuclear factor (NF)-κB activation, and the expression of pro-inflammatory factors and nerve growth factor; but it increased the expression of SOCS1. Inversely, miR-155 agomir significantly potentiated LPS-induced pathophysiological effects in BMDMs. MiR-155 agomir-induced effects were reversed by the NF-κB inhibitor. Mechanistically, treatment with siRNA against SOCS1 augmented the aforementioned LPS-mediated activities, which were antagonized by the addition of miR-155 antagomir. In conclusion, miR-155 inhibition downregulated NGF expression via decreasing M1 macrophage polarization and inflammatory responses dependent on the SOCS1/NF-κB pathway, subsequently diminishing MI-induced sympathetic neural remodeling and ventricular arrhythmias (VAs).
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Sympathetic Nervous System / MicroRNAs / Macrophages / Myocardial Infarction / Neuronal Plasticity Type of study: Prognostic_studies Limits: Animals Language: En Journal: Eur J Pharmacol Year: 2019 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Sympathetic Nervous System / MicroRNAs / Macrophages / Myocardial Infarction / Neuronal Plasticity Type of study: Prognostic_studies Limits: Animals Language: En Journal: Eur J Pharmacol Year: 2019 Document type: Article